Numerical investigation of passive optical sorting of plasmon nanoparticles

We explore the passive optical sorting of plasmon nanoparticles and investigate the optimal wavelength and optimal beam shape of incident field. The condition for optimal wavelength is found by maximising the nanoparticle separation whilst minimising the temperature increase in the system. We then u...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 19; no. 15; pp. 13922 - 13933
Main Authors Ploschner, M, Mazilu, M, Cižmár, T, Dholakia, K
Format Journal Article
LanguageEnglish
Published United States 18.07.2011
Online AccessGet full text

Cover

Loading…
More Information
Summary:We explore the passive optical sorting of plasmon nanoparticles and investigate the optimal wavelength and optimal beam shape of incident field. The condition for optimal wavelength is found by maximising the nanoparticle separation whilst minimising the temperature increase in the system. We then use the force optical eigenmode (FOEi) method to find the beam shape of incident electromagnetic field, maximising the force difference between plasmon nanoparticles. The maximum force difference is found with respect to the whole sorting region. The combination of wavelength and beam shape study is demonstrated for a specific case of gold nanoparticles of radius 40 nm and 50 nm respectively. The optimum wavelength for this particular situation is found to be above 700 nm. The optimum beam shape depends upon the size of sorting region and ranges from plane-wave illumination for infinite sorting region to a field maximising gradient force difference in a single point.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.19.013922