Multi-Antenna Transmission With Artificial Noise Against Randomly Distributed Eavesdroppers

In this paper, we study the secure multi-antenna transmission with artificial noise (AN) under slow fading channels coexisting with randomly located eavesdroppers. We provide a comprehensive secrecy performance analysis and system design/optimization under a stochastic geometry framework. Specifical...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 63; no. 11; pp. 4347 - 4362
Main Authors Zheng, Tong-Xing, Wang, Hui-Ming, Yuan, Jinhong, Towsley, Don, Lee, Moon Ho
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we study the secure multi-antenna transmission with artificial noise (AN) under slow fading channels coexisting with randomly located eavesdroppers. We provide a comprehensive secrecy performance analysis and system design/optimization under a stochastic geometry framework. Specifically, we first evaluate the secrecy outage performance, and derive a closed-form expression for the optimal power allocation ratio of the information signal power to the total transmit power that minimizes the secrecy outage probability (SOP). Subject to a SOP constraint, we then propose a dynamic parameter transmission scheme (DPTS) and a static parameter transmission scheme (SPTS) to maximize secrecy throughput, and provide explicit solutions on the optimal transmission parameters, including the wiretap code rates, the on-off transmission threshold and the power allocation ratio. Our results give new insight into secure transmission designs. For example, secrecy rate is a concave function of the power allocation ratio in DPTS, and AN plays a significant role under SOP constraints and in dense eavesdropper scenarios. In SPTS, transmission probability is a concave function of the power allocation ratio, and secrecy throughput is a quasi-concave function of the secrecy rate. Numerical results are demonstrated to validate our theoretical analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2015.2474390