Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells
The discrete sources method (DSM) and the discrete dipole approximation (DDA) were compared for simulation of light scattering by a red blood cell (RBC) model. We considered RBCs with diameters up to 8 mum (size parameter up to 38), relative refractive indices 1.03 and 1.06, and two different orient...
Saved in:
Published in | Optics express Vol. 18; no. 6; pp. 5681 - 5690 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.03.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The discrete sources method (DSM) and the discrete dipole approximation (DDA) were compared for simulation of light scattering by a red blood cell (RBC) model. We considered RBCs with diameters up to 8 mum (size parameter up to 38), relative refractive indices 1.03 and 1.06, and two different orientations. The agreement in the angle-resolved S(11) element of the Mueller matrix obtained by these methods is generally good, but it deteriorates with increasing scattering angle, diameter and refractive index of a RBC. Based on the DDA simulations with very fine discretization (up to 93 dipoles per wavelength) for a single RBC, we attributed most of the disagreement to the DSM, which results contain high-frequency ripples. For a single orientation of a RBC the DDA is comparable to or faster than the DSM. However, the relation is reversed when a set of particle orientations need to be simulated at once. Moreover, the DSM requires about an order of magnitude less computer memory. At present, application of the DSM for massive calculation of light scattering patterns of RBCs is hampered by its limitations in size parameter of a RBC due to the high number of harmonics used for calculations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.18.005681 |