A deep learning pipeline for morphological and viability assessment of 3D cancer cell spheroids
Three-dimensional (3D) spheroid models have advanced cancer research by better mimicking the tumour microenvironment compared to traditional two-dimensional cell cultures. However, challenges persist in high-throughput analysis of morphological characteristics and cell viability, as traditional meth...
Saved in:
Published in | Biology methods and protocols Vol. 10; no. 1; p. bpaf030 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Three-dimensional (3D) spheroid models have advanced cancer research by better mimicking the tumour microenvironment compared to traditional two-dimensional cell cultures. However, challenges persist in high-throughput analysis of morphological characteristics and cell viability, as traditional methods like manual fluorescence analysis are labour-intensive and inconsistent. Existing AI-based approaches often address segmentation or classification in isolation, lacking an integrated workflow. We propose a scalable, two-stage deep learning pipeline to address these gaps: (i) a U-Net model for precise detection and segmentation of 3D spheroids from microscopic images, achieving 95% prediction accuracy, and (ii) a CNN Regression Hybrid method for estimating live/dead cell percentages and classifying spheroids, with an R2value of 98%. This end-to-end pipeline automates cell viability quantification and generates key morphological parameters for spheroid growth kinetics. By integrating segmentation and analysis, our method addresses environmental variability and morphological characterization challenges, offering a robust tool for drug discovery, toxicity screening, and clinical research. This approach significantly improves efficiency and scalability of 3D spheroid evaluations, paving the way for advancements in cancer therapeutics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2396-8923 2396-8923 |
DOI: | 10.1093/biomethods/bpaf030 |