Design of Protective Inductors for HVDC Transmission Line Within DC Grid Offshore Wind Farms

This paper presents fault analysis and protective inductors design for an offshore wind farm, where the power collection system in the wind farm and the power transmission link to the grid adopt high-voltage direct-current (HVDC) technology. This paper focuses on dealing with short-circuit faults in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power delivery Vol. 28; no. 1; pp. 75 - 83
Main Authors Deng, Fujin, Chen, Zhe
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents fault analysis and protective inductors design for an offshore wind farm, where the power collection system in the wind farm and the power transmission link to the grid adopt high-voltage direct-current (HVDC) technology. This paper focuses on dealing with short-circuit faults in the HVDC link between the offshore station and the onshore station. The transient characteristics of the transmission system are analyzed in detail. The criteria of selecting protective inductors are proposed to effectively limit the short-circuit current and avoid the damage to the converters. A dc grid offshore wind farm is simulated, and the results demonstrate the effectiveness of the proposed protective inductors design.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2012.2224384