Gain-Scheduled Finite-Time Synchronization for Reaction-Diffusion Memristive Neural Networks Subject to Inconsistent Markov Chains
An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-sched...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 2952 - 2964 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results. |
---|---|
AbstractList | An innovative class of drive-response systems that are composed of Markovian reaction–diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov–Krasovskii functional and employing the canonical Bessel–Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results. An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results.An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results. |
Author | Song, Shuai Ahn, Choon Ki Man, Jingtao Song, Xiaona |
Author_xml | – sequence: 1 givenname: Xiaona orcidid: 0000-0001-8476-5112 surname: Song fullname: Song, Xiaona email: xiaona_97@163.com organization: School of Information Engineering, Henan University of Science and Technology, Luoyang, China – sequence: 2 givenname: Jingtao orcidid: 0000-0003-2184-503X surname: Man fullname: Man, Jingtao email: mjt546@163.com organization: School of Information Engineering, Henan University of Science and Technology, Luoyang, China – sequence: 3 givenname: Shuai orcidid: 0000-0002-4780-0967 surname: Song fullname: Song, Shuai email: songshuai_1010@163.com organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China – sequence: 4 givenname: Choon Ki orcidid: 0000-0003-0993-9658 surname: Ahn fullname: Ahn, Choon Ki email: hironaka@korea.ac.kr organization: School of Electrical Engineering, Korea University, Seoul, South Korea |
BookMark | eNp9kc1PHCEYh0ljo9b6D7QXkl68zJaPGQaOzbZak3WbdLeJN4LMO1nWWbDAaOyxf3kZ13jwUC4vkOfh4_29Qwc-eEDoAyUzSon6vF4uF6sZI4zMOCGKSPoGHTMqWMW4lAcv8_b6CJ2mtCVlCNKIWh2iI85a3jS8PUZ_L4zz1cpuoBsH6PC58y5DtXY7wKtHbzcxePfHZBc87kPEP8HYaVF9dX0_pmn7CnbRpezuAS9hjGYoJT-EeJvwarzZgs04B3zpbfCpcOAzvjLxNtzj-aZcnt6jt70ZEpw-1xP06_zbev69Wvy4uJx_WVSWM5krYZQRvO8op7WojeECWmUtCCEIqflNR1jHyt87zhiVtrSkF5L3pO-4qhtp-Qk62597F8PvEVLWO5csDIPxEMakWc1UK2shaEE_vUK3YYy-vE6zppZKEU4nSu4pG0NKEXptXX5qVY7GDZoSPUWln6LSU1T6OaqislfqXXQ7Ex__L33cSw4AXgRFG64axv8Bc2ugdg |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_TFUZZ_2022_3160303 crossref_primary_10_1109_JSYST_2021_3124082 crossref_primary_10_1109_TNNLS_2021_3122143 crossref_primary_10_1016_j_neunet_2022_09_032 crossref_primary_10_1016_j_amc_2020_125623 crossref_primary_10_1109_TNSE_2022_3168867 crossref_primary_10_1109_TSMC_2022_3220650 crossref_primary_10_1016_j_chaos_2024_114704 crossref_primary_10_3390_s24020444 crossref_primary_10_1016_j_neunet_2023_11_011 crossref_primary_10_1007_s12555_020_0518_2 crossref_primary_10_1016_j_fss_2024_108856 crossref_primary_10_1109_TCBB_2021_3114405 crossref_primary_10_1016_j_knosys_2023_110409 crossref_primary_10_1109_TCSI_2022_3179438 crossref_primary_10_1109_TSMC_2023_3246965 crossref_primary_10_1109_TNNLS_2023_3288849 crossref_primary_10_1109_TNNLS_2021_3110756 crossref_primary_10_1016_j_ins_2022_05_103 crossref_primary_10_1109_TNNLS_2022_3190694 crossref_primary_10_1016_j_eswa_2023_122213 crossref_primary_10_1002_rnc_7112 crossref_primary_10_1016_j_sysconle_2024_105839 crossref_primary_10_1007_s00521_021_06740_x crossref_primary_10_1007_s11071_021_06208_6 crossref_primary_10_1109_TCYB_2024_3363470 crossref_primary_10_1109_TSMC_2024_3450017 crossref_primary_10_1016_j_isatra_2022_08_011 crossref_primary_10_1016_j_comnet_2024_110185 crossref_primary_10_1016_j_jfranklin_2022_03_002 crossref_primary_10_1016_j_eswa_2023_119938 crossref_primary_10_1016_j_jfranklin_2022_12_049 crossref_primary_10_1016_j_knosys_2021_107539 crossref_primary_10_2478_amns_2023_1_00004 crossref_primary_10_1016_j_neucom_2024_127275 crossref_primary_10_1109_TNNLS_2023_3300270 crossref_primary_10_1016_j_neunet_2024_106556 crossref_primary_10_1109_TCYB_2022_3151709 crossref_primary_10_1109_TNB_2021_3111109 crossref_primary_10_1109_TNSE_2021_3110414 crossref_primary_10_1016_j_fss_2023_108654 crossref_primary_10_1016_j_knosys_2022_109595 crossref_primary_10_1016_j_isatra_2022_10_046 crossref_primary_10_1109_TCSI_2023_3329638 crossref_primary_10_1109_TFUZZ_2024_3373440 crossref_primary_10_1142_S0218348X22402459 crossref_primary_10_1109_TNNLS_2021_3093700 crossref_primary_10_1007_s11071_021_07187_4 crossref_primary_10_1109_TNNLS_2021_3131412 crossref_primary_10_1109_TSMC_2023_3246947 crossref_primary_10_1016_j_neucom_2022_09_126 crossref_primary_10_1109_TNNLS_2022_3146832 crossref_primary_10_1109_JSYST_2022_3218082 crossref_primary_10_1016_j_neunet_2024_106564 |
Cites_doi | 10.1109/TCYB.2020.2969499 10.1109/TAC.2016.2578300 10.1109/TNNLS.2019.2920368 10.1109/TSMC.2018.2866906 10.1109/TCYB.2019.2926115 10.1016/j.automatica.2014.10.003 10.1016/j.amc.2017.05.005 10.1109/TCBB.2019.2919532 10.1016/j.neunet.2018.10.004 10.1016/j.neucom.2017.05.060 10.1109/TCYB.2019.2913200 10.1016/j.automatica.2017.12.027 10.1016/j.neucom.2017.10.035 10.1016/j.automatica.2019.06.002 10.1109/TNNLS.2018.2843771 10.1016/j.neucom.2018.11.011 10.1016/j.chaos.2007.05.002 10.1007/s13042-015-0423-9 10.1016/j.neunet.2018.04.017 10.1109/TFUZZ.2018.2825306 10.1109/TSMC.2018.2828123 10.1016/j.jfranklin.2016.06.020 10.1109/TSMC.2019.2899733 10.1109/TNNLS.2018.2853650 10.1109/TCYB.2018.2824853 10.1109/TCYB.2018.2877410 10.1016/j.neunet.2018.05.004 10.1109/TFUZZ.2013.2294855 10.1016/j.neucom.2015.05.051 10.1049/iet-cta.2018.5618 10.1109/TNNLS.2016.2609148 10.1109/TFUZZ.2019.2953573 10.1109/TCBB.2016.2552519 10.1016/j.neunet.2019.03.016 10.1109/TCYB.2018.2837090 10.1016/j.sigpro.2018.02.024 10.1016/j.isatra.2019.10.008 10.1109/TAC.2017.2776747 10.1016/j.neunet.2019.08.003 10.1109/TNNLS.2019.2938774 10.1109/TSMC.2019.2946248 10.1109/TFUZZ.2015.2394380 10.1109/TSMC.2018.2798644 10.1016/j.automatica.2009.11.002 10.1016/j.neunet.2018.02.003 10.1109/TSMC.2016.2524063 10.1109/TCYB.2017.2776283 10.1109/TNNLS.2018.2874035 10.1016/j.neucom.2019.10.047 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3009081 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 2964 |
ExternalDocumentID | 10_1109_TNNLS_2020_3009081 9153952 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) Grant funderid: 10.13039/501100003725 – fundername: National Natural Science Foundation of China grantid: 61976081; U1604146 funderid: 10.13039/501100001809 – fundername: Foundation for the University Technological Innovative Talents of Henan Province grantid: 18HASTIT019 – fundername: Ministry of Science and ICT, Korea Government grantid: NRF-2020R1A2C1005449 funderid: 10.13039/501100014188 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c328t-6a9a63fd131464aa36e79cce6660043bd02d2238d32218c090f683f0fd39458c3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 19:25:34 EDT 2025 Sun Jun 29 16:07:12 EDT 2025 Thu Apr 24 23:05:23 EDT 2025 Tue Jul 01 00:27:34 EDT 2025 Wed Aug 27 02:26:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-6a9a63fd131464aa36e79cce6660043bd02d2238d32218c090f683f0fd39458c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2184-503X 0000-0003-0993-9658 0000-0002-4780-0967 0000-0001-8476-5112 |
PMID | 32735537 |
PQID | 2548990311 |
PQPubID | 85436 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2020_3009081 proquest_journals_2548990311 crossref_primary_10_1109_TNNLS_2020_3009081 ieee_primary_9153952 proquest_miscellaneous_2429784661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 hua (ref24) 2019 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 song (ref21) 2019 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 |
References_xml | – ident: ref49 doi: 10.1109/TCYB.2020.2969499 – ident: ref34 doi: 10.1109/TAC.2016.2578300 – ident: ref1 doi: 10.1109/TNNLS.2019.2920368 – ident: ref18 doi: 10.1109/TSMC.2018.2866906 – ident: ref50 doi: 10.1109/TCYB.2019.2926115 – ident: ref32 doi: 10.1016/j.automatica.2014.10.003 – ident: ref14 doi: 10.1016/j.amc.2017.05.005 – ident: ref10 doi: 10.1109/TCBB.2019.2919532 – ident: ref2 doi: 10.1016/j.neunet.2018.10.004 – ident: ref13 doi: 10.1016/j.neucom.2017.05.060 – ident: ref12 doi: 10.1109/TCYB.2019.2913200 – ident: ref33 doi: 10.1016/j.automatica.2017.12.027 – ident: ref11 doi: 10.1016/j.neucom.2017.10.035 – ident: ref38 doi: 10.1016/j.automatica.2019.06.002 – ident: ref26 doi: 10.1109/TNNLS.2018.2843771 – ident: ref39 doi: 10.1016/j.neucom.2018.11.011 – ident: ref42 doi: 10.1016/j.chaos.2007.05.002 – ident: ref29 doi: 10.1007/s13042-015-0423-9 – ident: ref8 doi: 10.1016/j.neunet.2018.04.017 – ident: ref45 doi: 10.1109/TFUZZ.2018.2825306 – ident: ref22 doi: 10.1109/TSMC.2018.2828123 – ident: ref36 doi: 10.1016/j.jfranklin.2016.06.020 – ident: ref31 doi: 10.1109/TSMC.2019.2899733 – ident: ref23 doi: 10.1109/TNNLS.2018.2853650 – ident: ref20 doi: 10.1109/TCYB.2018.2824853 – ident: ref7 doi: 10.1109/TCYB.2018.2877410 – ident: ref25 doi: 10.1016/j.neunet.2018.05.004 – ident: ref46 doi: 10.1109/TFUZZ.2013.2294855 – ident: ref15 doi: 10.1016/j.neucom.2015.05.051 – ident: ref44 doi: 10.1049/iet-cta.2018.5618 – ident: ref27 doi: 10.1109/TNNLS.2016.2609148 – ident: ref48 doi: 10.1109/TFUZZ.2019.2953573 – ident: ref41 doi: 10.1109/TCBB.2016.2552519 – ident: ref47 doi: 10.1016/j.neunet.2019.03.016 – ident: ref9 doi: 10.1109/TCYB.2018.2837090 – ident: ref17 doi: 10.1016/j.sigpro.2018.02.024 – ident: ref5 doi: 10.1016/j.isatra.2019.10.008 – ident: ref30 doi: 10.1109/TAC.2017.2776747 – ident: ref4 doi: 10.1016/j.neunet.2019.08.003 – ident: ref6 doi: 10.1109/TNNLS.2019.2938774 – ident: ref16 doi: 10.1109/TSMC.2019.2946248 – ident: ref35 doi: 10.1109/TFUZZ.2015.2394380 – ident: ref37 doi: 10.1109/TSMC.2018.2798644 – ident: ref43 doi: 10.1016/j.automatica.2009.11.002 – year: 2019 ident: ref24 article-title: H? filtering for nonhomogeneous Markovian jump repeated scalar nonlinear systems with multiplicative noises and partially mode-dependent characterization publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref3 doi: 10.1016/j.neunet.2018.02.003 – ident: ref51 doi: 10.1109/TSMC.2016.2524063 – year: 2019 ident: ref21 article-title: Finite-time H? asynchronous control for nonlinear Markov jump distributed parameter systems via quantized fuzzy output-feedback approach publication-title: IEEE Trans Cybern – ident: ref40 doi: 10.1109/TCYB.2017.2776283 – ident: ref28 doi: 10.1109/TNNLS.2018.2874035 – ident: ref19 doi: 10.1016/j.neucom.2019.10.047 |
SSID | ssj0000605649 |
Score | 2.5578923 |
Snippet | An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response... An innovative class of drive-response systems that are composed of Markovian reaction–diffusion memristive neural networks, where the drive and response... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2952 |
SubjectTerms | Artificial neural networks Canonical Bessel–Legendre (B–L) inequality Diffusion finite-time synchronization gain-scheduled controller inconsistent Markov chains Learning systems Markov analysis Markov chains Markov processes Markovian reaction–diffusion memristive neural networks (MNNs) Memristors Neural networks Nonhomogeneous media Nonlinear systems Synchronization Time synchronization |
Title | Gain-Scheduled Finite-Time Synchronization for Reaction-Diffusion Memristive Neural Networks Subject to Inconsistent Markov Chains |
URI | https://ieeexplore.ieee.org/document/9153952 https://www.proquest.com/docview/2548990311 https://www.proquest.com/docview/2429784661 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoB8SlUGjVLVAZiVvrJYljb3xEwBYhdg9dkPYWOX6oK2hSdRMkeuwvZ8Z5qGqrqrdIcZ4z_uYbex6EnHhtlSy8ZTLLDEuFlqywljMjuAOZOGVD15LZXF7dpddLsdwgH4dcGOdcCD5zYzwMe_m2Mg0ulZ0qmJ5KAOC-AMetzdUa1lMi4OUysN0klglL-GTZ58hE6vR2Pr9ZgDeYgJMKrALs4DbZ4mC6hcAO6L-YpNBj5Q9gDtZmukNm_Xu2QSb346YuxubHbyUc__dDdsnLjnbSs1ZPXpENV-6Rnb6lA-1m-D75-UmvSrYASdrmwVk6XSEnZZgoQhdPpQmldNvMTQp0l352bWIEu1h53-DKG525rwE4Hh3Fyh_w1Hkbar6mgFK47EPrigIuYWgu6FhZU0wYqh7p-Rd4-Po1uZte3p5fsa5NAzM8yWomtdKSextzQN1Uay7dRBnjwDHCfcbCRokFEpJZwI44M_D3vcy4j7zlKhWZ4W_IZlmV7i2hhSoi1A5gLTzNUqe5KMyEc0BzroX0IxL3kspNV8McW2k85MGXiVQeBJ2joPNO0CPyYbjmW1vB45-j91Fcw8hOUiNy2CtE3k3ydQ6-NXirgIpw1fFwGqYn7rno0lUNjAF7PwGOJ-N3f7_zAdlOMEwmRAAfks36e-OOgOfUxfug4M8i3Phc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEvFCiIhQJGghPyNrETb3zggFqWLd3dA7uV9hYc2xErSoLYpKgc-R38Ff4bY-chBIhbJW6R4odkf575xp4HwNNcGSmy3FCRJJpGsRI0M4ZTHXOLe2Kl8VVLZnMxOY3erOLVFnzvY2Gstd75zA7dp3_LN6Wu3VXZgcTjKWPWulCe2IsvaKBtXhwf4W4-Y2z8ank4oW0NAao5SyoqlFSC5ybkKBIipbiwI6m1RdbuHsEyEzCDGjIxCOww0YEMcpHwPMgNl1GcaI7jXoGryDNi1kSH9Tc4AVoCwvNrFgpGGR-tuqicQB4s5_PpAu1PhmYx8hjUvDtwjSNZiGNXc_0XJeiruvyhCrx-G-_Cj25lGreWD8O6yob6629JI__XpbsJN1piTV42J-EWbNniNux2RStIK8P24NtrtS7oArFq6jNryHjtWDd1oTBkcVFonyy4iU0lSOjJW9uEftCjdZ7X7m6RzOxHLxrPLXG5TXDWeeNMvyEoh93FFqlKgpLXOR_jKSoq4kKiynNy-B4n39yB00tZibuwXZSFvQckk1ng8I-8jEdJZBWPMz3iHPUVV7HIBxB2yEh1m6XdFQs5S721FsjUAyt1wEpbYA3ged_nU5Oj5J-t9xw8-pYtMgaw3wEwbcXYJmVozyJd4SH2etL_RgHkXpVUYcsa2yCjGSGLFeH9v4_8GK5PlrNpOj2enzyAHeacgry_8z5sV59r-xBZXZU98oeLwLvLhuRP7_9TQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gain-Scheduled+Finite-Time+Synchronization+for+Reaction-Diffusion+Memristive+Neural+Networks+Subject+to+Inconsistent+Markov+Chains&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Song%2C+Xiaona&rft.au=Man%2C+Jingtao&rft.au=Song%2C+Shuai&rft.au=Ahn%2C+Choon+Ki&rft.date=2021-07-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=32&rft.issue=7&rft.spage=2952&rft_id=info:doi/10.1109%2FTNNLS.2020.3009081&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |