Gain-Scheduled Finite-Time Synchronization for Reaction-Diffusion Memristive Neural Networks Subject to Inconsistent Markov Chains

An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-sched...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 2952 - 2964
Main Authors Song, Xiaona, Man, Jingtao, Song, Shuai, Ahn, Choon Ki
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results.
AbstractList An innovative class of drive-response systems that are composed of Markovian reaction–diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov–Krasovskii functional and employing the canonical Bessel–Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results.
An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results.An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results.
Author Song, Shuai
Ahn, Choon Ki
Man, Jingtao
Song, Xiaona
Author_xml – sequence: 1
  givenname: Xiaona
  orcidid: 0000-0001-8476-5112
  surname: Song
  fullname: Song, Xiaona
  email: xiaona_97@163.com
  organization: School of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 2
  givenname: Jingtao
  orcidid: 0000-0003-2184-503X
  surname: Man
  fullname: Man, Jingtao
  email: mjt546@163.com
  organization: School of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 3
  givenname: Shuai
  orcidid: 0000-0002-4780-0967
  surname: Song
  fullname: Song, Shuai
  email: songshuai_1010@163.com
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China
– sequence: 4
  givenname: Choon Ki
  orcidid: 0000-0003-0993-9658
  surname: Ahn
  fullname: Ahn, Choon Ki
  email: hironaka@korea.ac.kr
  organization: School of Electrical Engineering, Korea University, Seoul, South Korea
BookMark eNp9kc1PHCEYh0ljo9b6D7QXkl68zJaPGQaOzbZak3WbdLeJN4LMO1nWWbDAaOyxf3kZ13jwUC4vkOfh4_29Qwc-eEDoAyUzSon6vF4uF6sZI4zMOCGKSPoGHTMqWMW4lAcv8_b6CJ2mtCVlCNKIWh2iI85a3jS8PUZ_L4zz1cpuoBsH6PC58y5DtXY7wKtHbzcxePfHZBc87kPEP8HYaVF9dX0_pmn7CnbRpezuAS9hjGYoJT-EeJvwarzZgs04B3zpbfCpcOAzvjLxNtzj-aZcnt6jt70ZEpw-1xP06_zbev69Wvy4uJx_WVSWM5krYZQRvO8op7WojeECWmUtCCEIqflNR1jHyt87zhiVtrSkF5L3pO-4qhtp-Qk62597F8PvEVLWO5csDIPxEMakWc1UK2shaEE_vUK3YYy-vE6zppZKEU4nSu4pG0NKEXptXX5qVY7GDZoSPUWln6LSU1T6OaqislfqXXQ7Ex__L33cSw4AXgRFG64axv8Bc2ugdg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TFUZZ_2022_3160303
crossref_primary_10_1109_JSYST_2021_3124082
crossref_primary_10_1109_TNNLS_2021_3122143
crossref_primary_10_1016_j_neunet_2022_09_032
crossref_primary_10_1016_j_amc_2020_125623
crossref_primary_10_1109_TNSE_2022_3168867
crossref_primary_10_1109_TSMC_2022_3220650
crossref_primary_10_1016_j_chaos_2024_114704
crossref_primary_10_3390_s24020444
crossref_primary_10_1016_j_neunet_2023_11_011
crossref_primary_10_1007_s12555_020_0518_2
crossref_primary_10_1016_j_fss_2024_108856
crossref_primary_10_1109_TCBB_2021_3114405
crossref_primary_10_1016_j_knosys_2023_110409
crossref_primary_10_1109_TCSI_2022_3179438
crossref_primary_10_1109_TSMC_2023_3246965
crossref_primary_10_1109_TNNLS_2023_3288849
crossref_primary_10_1109_TNNLS_2021_3110756
crossref_primary_10_1016_j_ins_2022_05_103
crossref_primary_10_1109_TNNLS_2022_3190694
crossref_primary_10_1016_j_eswa_2023_122213
crossref_primary_10_1002_rnc_7112
crossref_primary_10_1016_j_sysconle_2024_105839
crossref_primary_10_1007_s00521_021_06740_x
crossref_primary_10_1007_s11071_021_06208_6
crossref_primary_10_1109_TCYB_2024_3363470
crossref_primary_10_1109_TSMC_2024_3450017
crossref_primary_10_1016_j_isatra_2022_08_011
crossref_primary_10_1016_j_comnet_2024_110185
crossref_primary_10_1016_j_jfranklin_2022_03_002
crossref_primary_10_1016_j_eswa_2023_119938
crossref_primary_10_1016_j_jfranklin_2022_12_049
crossref_primary_10_1016_j_knosys_2021_107539
crossref_primary_10_2478_amns_2023_1_00004
crossref_primary_10_1016_j_neucom_2024_127275
crossref_primary_10_1109_TNNLS_2023_3300270
crossref_primary_10_1016_j_neunet_2024_106556
crossref_primary_10_1109_TCYB_2022_3151709
crossref_primary_10_1109_TNB_2021_3111109
crossref_primary_10_1109_TNSE_2021_3110414
crossref_primary_10_1016_j_fss_2023_108654
crossref_primary_10_1016_j_knosys_2022_109595
crossref_primary_10_1016_j_isatra_2022_10_046
crossref_primary_10_1109_TCSI_2023_3329638
crossref_primary_10_1109_TFUZZ_2024_3373440
crossref_primary_10_1142_S0218348X22402459
crossref_primary_10_1109_TNNLS_2021_3093700
crossref_primary_10_1007_s11071_021_07187_4
crossref_primary_10_1109_TNNLS_2021_3131412
crossref_primary_10_1109_TSMC_2023_3246947
crossref_primary_10_1016_j_neucom_2022_09_126
crossref_primary_10_1109_TNNLS_2022_3146832
crossref_primary_10_1109_JSYST_2022_3218082
crossref_primary_10_1016_j_neunet_2024_106564
Cites_doi 10.1109/TCYB.2020.2969499
10.1109/TAC.2016.2578300
10.1109/TNNLS.2019.2920368
10.1109/TSMC.2018.2866906
10.1109/TCYB.2019.2926115
10.1016/j.automatica.2014.10.003
10.1016/j.amc.2017.05.005
10.1109/TCBB.2019.2919532
10.1016/j.neunet.2018.10.004
10.1016/j.neucom.2017.05.060
10.1109/TCYB.2019.2913200
10.1016/j.automatica.2017.12.027
10.1016/j.neucom.2017.10.035
10.1016/j.automatica.2019.06.002
10.1109/TNNLS.2018.2843771
10.1016/j.neucom.2018.11.011
10.1016/j.chaos.2007.05.002
10.1007/s13042-015-0423-9
10.1016/j.neunet.2018.04.017
10.1109/TFUZZ.2018.2825306
10.1109/TSMC.2018.2828123
10.1016/j.jfranklin.2016.06.020
10.1109/TSMC.2019.2899733
10.1109/TNNLS.2018.2853650
10.1109/TCYB.2018.2824853
10.1109/TCYB.2018.2877410
10.1016/j.neunet.2018.05.004
10.1109/TFUZZ.2013.2294855
10.1016/j.neucom.2015.05.051
10.1049/iet-cta.2018.5618
10.1109/TNNLS.2016.2609148
10.1109/TFUZZ.2019.2953573
10.1109/TCBB.2016.2552519
10.1016/j.neunet.2019.03.016
10.1109/TCYB.2018.2837090
10.1016/j.sigpro.2018.02.024
10.1016/j.isatra.2019.10.008
10.1109/TAC.2017.2776747
10.1016/j.neunet.2019.08.003
10.1109/TNNLS.2019.2938774
10.1109/TSMC.2019.2946248
10.1109/TFUZZ.2015.2394380
10.1109/TSMC.2018.2798644
10.1016/j.automatica.2009.11.002
10.1016/j.neunet.2018.02.003
10.1109/TSMC.2016.2524063
10.1109/TCYB.2017.2776283
10.1109/TNNLS.2018.2874035
10.1016/j.neucom.2019.10.047
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3009081
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2964
ExternalDocumentID 10_1109_TNNLS_2020_3009081
9153952
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF) Grant
  funderid: 10.13039/501100003725
– fundername: National Natural Science Foundation of China
  grantid: 61976081; U1604146
  funderid: 10.13039/501100001809
– fundername: Foundation for the University Technological Innovative Talents of Henan Province
  grantid: 18HASTIT019
– fundername: Ministry of Science and ICT, Korea Government
  grantid: NRF-2020R1A2C1005449
  funderid: 10.13039/501100014188
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-6a9a63fd131464aa36e79cce6660043bd02d2238d32218c090f683f0fd39458c3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 19:25:34 EDT 2025
Sun Jun 29 16:07:12 EDT 2025
Thu Apr 24 23:05:23 EDT 2025
Tue Jul 01 00:27:34 EDT 2025
Wed Aug 27 02:26:39 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-6a9a63fd131464aa36e79cce6660043bd02d2238d32218c090f683f0fd39458c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2184-503X
0000-0003-0993-9658
0000-0002-4780-0967
0000-0001-8476-5112
PMID 32735537
PQID 2548990311
PQPubID 85436
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2020_3009081
proquest_journals_2548990311
crossref_primary_10_1109_TNNLS_2020_3009081
ieee_primary_9153952
proquest_miscellaneous_2429784661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
hua (ref24) 2019
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
song (ref21) 2019
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
References_xml – ident: ref49
  doi: 10.1109/TCYB.2020.2969499
– ident: ref34
  doi: 10.1109/TAC.2016.2578300
– ident: ref1
  doi: 10.1109/TNNLS.2019.2920368
– ident: ref18
  doi: 10.1109/TSMC.2018.2866906
– ident: ref50
  doi: 10.1109/TCYB.2019.2926115
– ident: ref32
  doi: 10.1016/j.automatica.2014.10.003
– ident: ref14
  doi: 10.1016/j.amc.2017.05.005
– ident: ref10
  doi: 10.1109/TCBB.2019.2919532
– ident: ref2
  doi: 10.1016/j.neunet.2018.10.004
– ident: ref13
  doi: 10.1016/j.neucom.2017.05.060
– ident: ref12
  doi: 10.1109/TCYB.2019.2913200
– ident: ref33
  doi: 10.1016/j.automatica.2017.12.027
– ident: ref11
  doi: 10.1016/j.neucom.2017.10.035
– ident: ref38
  doi: 10.1016/j.automatica.2019.06.002
– ident: ref26
  doi: 10.1109/TNNLS.2018.2843771
– ident: ref39
  doi: 10.1016/j.neucom.2018.11.011
– ident: ref42
  doi: 10.1016/j.chaos.2007.05.002
– ident: ref29
  doi: 10.1007/s13042-015-0423-9
– ident: ref8
  doi: 10.1016/j.neunet.2018.04.017
– ident: ref45
  doi: 10.1109/TFUZZ.2018.2825306
– ident: ref22
  doi: 10.1109/TSMC.2018.2828123
– ident: ref36
  doi: 10.1016/j.jfranklin.2016.06.020
– ident: ref31
  doi: 10.1109/TSMC.2019.2899733
– ident: ref23
  doi: 10.1109/TNNLS.2018.2853650
– ident: ref20
  doi: 10.1109/TCYB.2018.2824853
– ident: ref7
  doi: 10.1109/TCYB.2018.2877410
– ident: ref25
  doi: 10.1016/j.neunet.2018.05.004
– ident: ref46
  doi: 10.1109/TFUZZ.2013.2294855
– ident: ref15
  doi: 10.1016/j.neucom.2015.05.051
– ident: ref44
  doi: 10.1049/iet-cta.2018.5618
– ident: ref27
  doi: 10.1109/TNNLS.2016.2609148
– ident: ref48
  doi: 10.1109/TFUZZ.2019.2953573
– ident: ref41
  doi: 10.1109/TCBB.2016.2552519
– ident: ref47
  doi: 10.1016/j.neunet.2019.03.016
– ident: ref9
  doi: 10.1109/TCYB.2018.2837090
– ident: ref17
  doi: 10.1016/j.sigpro.2018.02.024
– ident: ref5
  doi: 10.1016/j.isatra.2019.10.008
– ident: ref30
  doi: 10.1109/TAC.2017.2776747
– ident: ref4
  doi: 10.1016/j.neunet.2019.08.003
– ident: ref6
  doi: 10.1109/TNNLS.2019.2938774
– ident: ref16
  doi: 10.1109/TSMC.2019.2946248
– ident: ref35
  doi: 10.1109/TFUZZ.2015.2394380
– ident: ref37
  doi: 10.1109/TSMC.2018.2798644
– ident: ref43
  doi: 10.1016/j.automatica.2009.11.002
– year: 2019
  ident: ref24
  article-title: H? filtering for nonhomogeneous Markovian jump repeated scalar nonlinear systems with multiplicative noises and partially mode-dependent characterization
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref3
  doi: 10.1016/j.neunet.2018.02.003
– ident: ref51
  doi: 10.1109/TSMC.2016.2524063
– year: 2019
  ident: ref21
  article-title: Finite-time H? asynchronous control for nonlinear Markov jump distributed parameter systems via quantized fuzzy output-feedback approach
  publication-title: IEEE Trans Cybern
– ident: ref40
  doi: 10.1109/TCYB.2017.2776283
– ident: ref28
  doi: 10.1109/TNNLS.2018.2874035
– ident: ref19
  doi: 10.1016/j.neucom.2019.10.047
SSID ssj0000605649
Score 2.5578923
Snippet An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response...
An innovative class of drive-response systems that are composed of Markovian reaction–diffusion memristive neural networks, where the drive and response...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2952
SubjectTerms Artificial neural networks
Canonical Bessel–Legendre (B–L) inequality
Diffusion
finite-time synchronization
gain-scheduled controller
inconsistent Markov chains
Learning systems
Markov analysis
Markov chains
Markov processes
Markovian reaction–diffusion memristive neural networks (MNNs)
Memristors
Neural networks
Nonhomogeneous media
Nonlinear systems
Synchronization
Time synchronization
Title Gain-Scheduled Finite-Time Synchronization for Reaction-Diffusion Memristive Neural Networks Subject to Inconsistent Markov Chains
URI https://ieeexplore.ieee.org/document/9153952
https://www.proquest.com/docview/2548990311
https://www.proquest.com/docview/2429784661
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoB8SlUGjVLVAZiVvrJYljb3xEwBYhdg9dkPYWOX6oK2hSdRMkeuwvZ8Z5qGqrqrdIcZ4z_uYbex6EnHhtlSy8ZTLLDEuFlqywljMjuAOZOGVD15LZXF7dpddLsdwgH4dcGOdcCD5zYzwMe_m2Mg0ulZ0qmJ5KAOC-AMetzdUa1lMi4OUysN0klglL-GTZ58hE6vR2Pr9ZgDeYgJMKrALs4DbZ4mC6hcAO6L-YpNBj5Q9gDtZmukNm_Xu2QSb346YuxubHbyUc__dDdsnLjnbSs1ZPXpENV-6Rnb6lA-1m-D75-UmvSrYASdrmwVk6XSEnZZgoQhdPpQmldNvMTQp0l352bWIEu1h53-DKG525rwE4Hh3Fyh_w1Hkbar6mgFK47EPrigIuYWgu6FhZU0wYqh7p-Rd4-Po1uZte3p5fsa5NAzM8yWomtdKSextzQN1Uay7dRBnjwDHCfcbCRokFEpJZwI44M_D3vcy4j7zlKhWZ4W_IZlmV7i2hhSoi1A5gLTzNUqe5KMyEc0BzroX0IxL3kspNV8McW2k85MGXiVQeBJ2joPNO0CPyYbjmW1vB45-j91Fcw8hOUiNy2CtE3k3ydQ6-NXirgIpw1fFwGqYn7rno0lUNjAF7PwGOJ-N3f7_zAdlOMEwmRAAfks36e-OOgOfUxfug4M8i3Phc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkEvFCiIhQJGghPyNrETb3zggFqWLd3dA7uV9hYc2xErSoLYpKgc-R38Ff4bY-chBIhbJW6R4odkf575xp4HwNNcGSmy3FCRJJpGsRI0M4ZTHXOLe2Kl8VVLZnMxOY3erOLVFnzvY2Gstd75zA7dp3_LN6Wu3VXZgcTjKWPWulCe2IsvaKBtXhwf4W4-Y2z8ank4oW0NAao5SyoqlFSC5ybkKBIipbiwI6m1RdbuHsEyEzCDGjIxCOww0YEMcpHwPMgNl1GcaI7jXoGryDNi1kSH9Tc4AVoCwvNrFgpGGR-tuqicQB4s5_PpAu1PhmYx8hjUvDtwjSNZiGNXc_0XJeiruvyhCrx-G-_Cj25lGreWD8O6yob6629JI__XpbsJN1piTV42J-EWbNniNux2RStIK8P24NtrtS7oArFq6jNryHjtWDd1oTBkcVFonyy4iU0lSOjJW9uEftCjdZ7X7m6RzOxHLxrPLXG5TXDWeeNMvyEoh93FFqlKgpLXOR_jKSoq4kKiynNy-B4n39yB00tZibuwXZSFvQckk1ng8I-8jEdJZBWPMz3iHPUVV7HIBxB2yEh1m6XdFQs5S721FsjUAyt1wEpbYA3ged_nU5Oj5J-t9xw8-pYtMgaw3wEwbcXYJmVozyJd4SH2etL_RgHkXpVUYcsa2yCjGSGLFeH9v4_8GK5PlrNpOj2enzyAHeacgry_8z5sV59r-xBZXZU98oeLwLvLhuRP7_9TQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gain-Scheduled+Finite-Time+Synchronization+for+Reaction-Diffusion+Memristive+Neural+Networks+Subject+to+Inconsistent+Markov+Chains&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Song%2C+Xiaona&rft.au=Man%2C+Jingtao&rft.au=Song%2C+Shuai&rft.au=Ahn%2C+Choon+Ki&rft.date=2021-07-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=32&rft.issue=7&rft.spage=2952&rft_id=info:doi/10.1109%2FTNNLS.2020.3009081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon