Gain-Scheduled Finite-Time Synchronization for Reaction-Diffusion Memristive Neural Networks Subject to Inconsistent Markov Chains

An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-sched...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 2952 - 2964
Main Authors Song, Xiaona, Man, Jingtao, Song, Shuai, Ahn, Choon Ki
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3009081