Adiabatic and diabatic process of sum frequency conversion

Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolut...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 18; no. 19; p. 20428
Main Authors Liqing, Ren, Yongfang, Li, Baihong, Li, Lei, Wang, Zhaohua, Wang
Format Journal Article
LanguageEnglish
Published United States 13.09.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the dressed state formalism, we obtain the adiabatic criterion of the sum frequency conversion. We show that this constraint restricts the energy conversion between the two dressed fields, which are superpositions of the signal field and the sum frequency field. We also show that the evolution of the populations of the dressed fields, which in turn describes the conversion of light photons from the seed frequency to the sum frequency during propagation through the nonlinear crystal. Take the quasiphased matched (QPM) scheme as an example, we calculate the expected bandwidth of the frequency conversion process, and its dependence on the length of the crystal. We demonstrate that the evolutionary patterns of the sum frequency field's energy are similar to the Fresnel diffraction of a light field. We finally show that the expected bandwidth can be also deduced from the evolution of the adiabaticity of the dressed fileds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.18.020428