Effect of helical rolling on the bainitic microstructure and impact toughness of the low-carbon microalloyed steel

Ferrite-bainite microstructures and impact toughness of the X65 low-carbon microalloyed steel were investigated after helical rolling at 1000, 920, 850, and 810 °C followed by continuous cooling in air. After helical rolling at 1000 °C, granular bainite with large areas of the massive-shape martensi...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 816; p. 141275
Main Authors Derevyagina, L.S., Gordienko, A.I., Surikova, N.S., Volochaev, M.N.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ferrite-bainite microstructures and impact toughness of the X65 low-carbon microalloyed steel were investigated after helical rolling at 1000, 920, 850, and 810 °C followed by continuous cooling in air. After helical rolling at 1000 °C, granular bainite with large areas of the massive-shape martensite-austenite constituent (d = 1.5 μm) and a high fraction of twinned martensite (d > 2.0 μm) were observed in the steel. This caused a decrease in impact energy at low test temperatures (for example, 70 J at –70°С). Lowering the helical rolling temperature contributed to a reduction of dimensions of both ferrite-bainite and martensite-austenite constituent areas, as well as the replacement of the latter by a slender type one and an improvement in fracture toughness at the low temperatures. The highest impact energy level (210 J at –70 °C) was achieved after helical rolling at 850 °C due to the formation of a homogeneous microstructure, which included dispersed ferrite grains, granular bainite and small fractions of the slender type martensite-austenite constituent (d = 0.1–0.7 μm). In this case, areas of twinned martensite were absent.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2021.141275