Tuning exciton diffusion, mobility and emission line width in CdSe nanoplatelets via lateral size

We investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 46; pp. 23521 - 23531
Main Authors Achtstein, Alexander W., Ayari, Sabrine, Helmrich, Sophia, Quick, Michael T., Owschimikow, Nina, Jaziri, Sihem, Woggon, Ulrike
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be tuned via the lateral size and aspect ratio. The coupling to acoustic and optical phonons can be altered via the lateral size and aspect ratio of the platelets. Subsequently the exciton diffusion and mobility become tunable since these phonon scattering processes determine and limit the mobility. At 4 K the exciton mobility increases from ∼ 4 × 10 3 cm 2 V −1 s −1 to more than 1.4 × 10 4 cm 2 V −1 s −1 for large platelets, while there are weaker changes with size and the mobility is around 8 × 10 1 cm 2 V −1 s −1 for large platelets at room temperature. In turn at 4 K the exciton diffusion coefficient increases with the lateral size from ∼ 1.3 cm 2 s −1 to ∼ 5 cm 2 s −1 , while it is around half the value for large platelets at room temperature. Our experimental results are in good agreement with theoretical modeling, showing a lateral size and aspect ratio dependence. The findings open up the possibility for materials with tunable exciton mobility, diffusion or emission line width, but quasi constant transition energy. High exciton mobility is desirable e.g. for solar cells and allows efficient excitation harvesting and extraction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr04745g