Development of Norelgestromin Dissolving Bilayer Microarray Patches for Sustained Release of Hormonal Contraceptive

Microarray patches (MAPs) offer a noninvasive and patient-friendly drug delivery method, suitable for self-administration, which is especially promising for low- and middle-income country settings. This study focuses on the development of dissolving bilayer MAPs loaded with norelgestromin (NGMN) as...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutics Vol. 16; no. 7; p. 946
Main Authors Vora, Lalitkumar K, Tekko, Ismaiel A, Volpe Zanutto, Fabiana, Sabri, Akmal, Choy, Robert K M, Mistilis, Jessica, Kwarteng, Priscilla, Kilbourne-Brook, Maggie, Jarrahian, Courtney, McCarthy, Helen O, Donnelly, Ryan F
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microarray patches (MAPs) offer a noninvasive and patient-friendly drug delivery method, suitable for self-administration, which is especially promising for low- and middle-income country settings. This study focuses on the development of dissolving bilayer MAPs loaded with norelgestromin (NGMN) as a first step towards developing a future potential drug delivery system for sustained hormonal contraception. The fabricated MAPs were designed with the appropriate needle lengths to penetrate the stratum corneum, while remaining minimally stimulating to dermal nociceptors. Ex vivo assessments showed that the MAPs delivered an average of 176 ± 60.9 μg of NGMN per MAP into excised neonatal porcine skin, representing 15.3 ± 5.3% of the loaded drug. In vivo pharmacokinetic analysis in Sprague Dawley rats demonstrated a Tmax of 4 h and a Cmax of 67.4 ± 20.1 ng/mL for the MAP-treated group, compared to a Tmax of 1 h and a Cmax of 700 ± 138 ng/mL for the intramuscular (IM) injection group, with a relative bioavailability of approximately 10% for the MAPs. The MAP-treated rats maintained plasma levels sufficient for therapeutic effects for up to 7 days after a single application. These results indicate the potential of NGMN-loaded dissolving bilayer MAPs, with further development focused on extending the release duration and improving bioavailability for prolonged contraceptive effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics16070946