Fuzzy Discrete Event Systems for Multiobjective Control: Framework and Application to Mobile Robot Navigation

Fuzzy discrete event systems (FDESs) have been introduced in recent years to model systems whose discrete states or discrete state transitions can be uncertain and are, hence, determined by a possibility degree. This paper develops an FDES framework for the control of sampled data systems that have...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 20; no. 5; pp. 910 - 922
Main Authors Schmidt, K. W., Boutalis, Y. S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fuzzy discrete event systems (FDESs) have been introduced in recent years to model systems whose discrete states or discrete state transitions can be uncertain and are, hence, determined by a possibility degree. This paper develops an FDES framework for the control of sampled data systems that have to fulfill multiple objectives. The choice of a fuzzy system representation is justified by the assumption of a controller realization that depends on various potentially imprecise sensor measurements. The proposed framework consists of three basic steps that are performed at each sampling instant. First, the current fuzzy state of the system is determined by a sensor evaluation. Second, the fuzzy state in the future sampling instant is predicted for all possible control actions of the system. Finally, an original multiobjective weighting strategy is proposed to determine the control action to be applied in the current sampling instant. The features of the proposed approach are demonstrated by a detailed mobile robot example, which includes a simulation study.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-6706
1941-0034
DOI:10.1109/TFUZZ.2012.2189219