Analysis of cryptosystem recognition scheme based on Euclidean distance feature extraction in three machine learning classifiers

In reality, many cryptographic analysis techniques are based on a specific cryptographic system or a large number of encrypted ciphertext. The identification and detection of cryptographic system is of great significance for evaluating the security of the algorithm and guiding the design and improve...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1314; no. 1; pp. 12184 - 12191
Main Authors Fan, SiJie, Zhao, YaQun
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In reality, many cryptographic analysis techniques are based on a specific cryptographic system or a large number of encrypted ciphertext. The identification and detection of cryptographic system is of great significance for evaluating the security of the algorithm and guiding the design and improvement of the algorithm. In this paper, we transcode each character in ciphertext into a decimal number, construct these numbers into one-dimensional arrays, and obtain the Euclidean distance between these one-dimensional arrays. Then we use these distances as features and input them into three machine learning classifiers: random forest, logistic regression and support vector machine to recognize cryptosystem and compare their recognition accuracy. The subjects include 8 common block ciphers (DES, 3DES, AES-128, AES-256, IDEA, SMS4, Blowfish, Camellia-128). The experimental results show that using the feature extraction scheme not only shortens the experimental time, reduces the computational cost, but also improves the recognition accuracy of eight typical block cipher algorithms. The classification accuracy of the ECB mode in the random forest classifier is 75%, which is higher than the existing published literature experimental results. The classification accuracy rate of CBC mode is higher than 13.5%, which is higher than the accuracy of random classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1314/1/012184