Feature Extraction and Image Recognition with Convolutional Neural Networks
The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by...
Saved in:
Published in | Journal of physics. Conference series Vol. 1087; no. 6; pp. 62032 - 62038 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by animal visual system. Convolution serves as a perfect realization of an optic nerve cell which merely responds to its receptive field and it performs well in image feature extraction. Being highly-hierarchical networks, CNN is structured with a series of different functional layers. The function blocks are separated and described clearly by each layer in this paper. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented. |
---|---|
AbstractList | The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by animal visual system. Convolution serves as a perfect realization of an optic nerve cell which merely responds to its receptive field and it performs well in image feature extraction. Being highly-hierarchical networks, CNN is structured with a series of different functional layers. The function blocks are separated and described clearly by each layer in this paper. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented. |
Author | Liu, Yu Han |
Author_xml | – sequence: 1 givenname: Yu Han surname: Liu fullname: Liu, Yu Han email: liuyhnnn@126.com organization: Glasgow College, University of Electronic Science and Technology of China , China |
BookMark | eNqNkF1LwzAUhoNMcJv-BgveCbNpPtsLL6RsOh0qflyHLE1nZ9fUpHX6721XmSiC5ua85-Q84c07AL3CFBqAwwCeBDAM_YATNGI0Yn7Tcp_5kCGI0Q7ob296Wx2Ge2Dg3BJC3BzeB1cTLavaam_8VlmpqswUniwSb7qSC-3daWUWRbaZrrPqyYtN8Wryuh3I3LvWtd2Uam3ss9sHu6nMnT74rEPwOBk_xBej2c35ND6bjRRGIRpJRuYpSXQYJIopyoiSAWxEEhEyl5A2MiUBVAxKjpTECUIkQpRxKec0IggPwVH3bmnNS61dJZamto0hJxDliFLMcLt12m0pa5yzOhUqq2TrvPlolosAijY_0SYj2pTalgsmuvwanv_gS5utpH3_B4k7MjPll7W_qeNfqMvb-P77oiiTFH8Apw-SFA |
CitedBy_id | crossref_primary_10_17341_gazimmfd_541677 crossref_primary_10_1002_esp_5833 crossref_primary_10_3390_diagnostics13122106 crossref_primary_10_1109_TCBB_2020_3034313 crossref_primary_10_1002_ima_22695 crossref_primary_10_1515_eng_2024_0101 crossref_primary_10_25130_tjes_31_3_19 crossref_primary_10_22382_wfs_2023_10 crossref_primary_10_1016_j_buildenv_2023_111126 crossref_primary_10_1016_j_jneumeth_2024_110158 crossref_primary_10_1109_LES_2024_3370634 crossref_primary_10_1364_AO_533586 crossref_primary_10_1088_2051_672X_aca10f crossref_primary_10_3390_rs15194804 crossref_primary_10_1007_s42979_024_02615_9 crossref_primary_10_1016_j_cmpb_2020_105635 crossref_primary_10_1088_1674_1056_ad1926 crossref_primary_10_3390_cancers14215382 crossref_primary_10_3390_rs16050801 crossref_primary_10_3390_horticulturae8060470 crossref_primary_10_1109_ACCESS_2021_3074088 crossref_primary_10_1109_JSTARS_2021_3128938 crossref_primary_10_1109_ACCESS_2024_3523069 crossref_primary_10_3389_frobt_2023_1106439 crossref_primary_10_3390_s20174675 crossref_primary_10_1007_s12553_021_00620_z crossref_primary_10_1371_journal_pone_0304017 crossref_primary_10_3390_rs16224141 crossref_primary_10_3389_fchem_2021_820417 crossref_primary_10_3390_rs15071821 crossref_primary_10_1016_j_engappai_2024_109217 crossref_primary_10_1002_mgea_68 crossref_primary_10_1007_s10694_023_01426_3 crossref_primary_10_1016_j_istruc_2023_105019 crossref_primary_10_3390_electronics9081257 crossref_primary_10_56294_dm2024_592 crossref_primary_10_32604_iasc_2022_019778 crossref_primary_10_1007_s11042_022_13182_7 crossref_primary_10_1109_TIFS_2023_3312973 crossref_primary_10_3390_su151914045 crossref_primary_10_1007_s00521_023_08283_9 crossref_primary_10_1371_journal_pone_0268962 crossref_primary_10_1145_3702208 crossref_primary_10_1038_s41467_022_33239_3 crossref_primary_10_3390_rs15040895 crossref_primary_10_1155_2023_9790005 crossref_primary_10_3233_JIFS_220061 crossref_primary_10_1080_15538362_2021_2023069 crossref_primary_10_3390_ijerph191912095 crossref_primary_10_1007_s10661_022_10118_4 crossref_primary_10_1016_j_geoen_2023_211802 crossref_primary_10_3390_brainsci11070902 crossref_primary_10_3390_electronics13193814 crossref_primary_10_1063_5_0206387 crossref_primary_10_18778_0208_6018_362_04 crossref_primary_10_26599_TST_2021_9010072 crossref_primary_10_26634_jaim_2_1_20225 |
Cites_doi | 10.1109/IJCNN.1989.118638 10.1109/5.726791 10.1109/29.21701 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/1087/6/062032 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Feature Extraction and Image Recognition with Convolutional Neural Networks |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_1087_6_062032 JPCS_1087_6_062032 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP AALHV ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EJD EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 02O 1WK AAYXX ACARI AERVB AGQPQ AHSEE ARNYC BBWZM C1A CITATION FEDTE H13 HVGLF JCGBZ M48 OVT PHGZM PHGZT Q02 S3P 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3282-a64bf4de81dc6c564ca106c5d944ba056c5f410c60a72ca3d22492567aab59423 |
IEDL.DBID | BENPR |
ISSN | 1742-6588 |
IngestDate | Sun Jul 13 04:33:39 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 Tue Jul 01 03:53:52 EDT 2025 Wed Aug 21 03:40:17 EDT 2024 Fri Jan 08 09:41:26 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3282-a64bf4de81dc6c564ca106c5d944ba056c5f410c60a72ca3d22492567aab59423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2572553632?pq-origsite=%requestingapplication% |
PQID | 2572553632 |
PQPubID | 4998668 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2572553632 crossref_citationtrail_10_1088_1742_6596_1087_6_062032 crossref_primary_10_1088_1742_6596_1087_6_062032 iop_journals_10_1088_1742_6596_1087_6_062032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 20180901 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Jain A. K. (1) 2011 4 5 LeCun Y. (10) 2013 Glorot X (9) 2011; 130 7 Koushik J. (3) 2016 Theano Development Team (6) Szeliski R. (2) 2010 Jarrett K (8) 2010; 30 |
References_xml | – year: 2011 ident: 1 publication-title: Handbook of face recognition – ident: 4 doi: 10.1109/IJCNN.1989.118638 – start-page: 11 year: 2010 ident: 2 publication-title: Computer Vision: Algorithms and Applications – volume: 130 start-page: 297 year: 2011 ident: 9 publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligencs & Statistics, (AISTATS) – volume: 30 start-page: 2146 year: 2010 ident: 8 publication-title: IEEE International Conference on Computer Vision – ident: 6 – ident: 5 doi: 10.1109/5.726791 – year: 2013 ident: 10 – year: 2016 ident: 3 – ident: 7 doi: 10.1109/29.21701 |
SSID | ssj0033337 |
Score | 2.5499158 |
Snippet | The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 62032 |
SubjectTerms | Algorithms Artificial neural networks Feature extraction Feature recognition Neural networks Object recognition Physics Structural hierarchy Taste |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9uIvjitzidUtBHu3VtcskeZWzMiTrUwd5KmnQvaje2TsS_3kvTqlNkiH3pB3dJek0vv7S_uxByJqUPrEkbLnA-cilE2hVSM1ejPxYaooBnCUyvb6A7oL0hG36NhRlPctdfw0ObKNiaMCfEiTpiaN_FCgCvCF6HugdmGfASWQ0Ejp8miO-2X3jjADdugyKNkhAFx-v3ghZGqBK24oebzsaeziZRRast5eSxNk-jmnr7ltDxf7e1RTZyaOpcWI1tshInO2Qto4iq2S65MmhxPo2d9ms6teEQjky0c_mMLsm5K4hIeNV823Va4-Ql79ZYqMkBku0y0vlsjww67YdW182XYnBVgJMyVwI1jL4Y0a0CxYAqiXNJxXST0kgiiFJsRBueAk9yX8lA-yYTIQMuZYRdwQ_2STkZJ_EBcZhAEKGAIk7RFMGYaMScaV8KVIqbI1EhUJg_VHmecrNcxlOY_S8XIjSWCo2lzCkPIbSWqhDvQ3FiU3UsVznHxxHmr-1sufjpgniv37pflAgnelQh1aK7fIqiZ8TJWwCBf_i3Oo_IOmI0YWltVVJOp_P4GHFQGp1kHf0dK570Jg priority: 102 providerName: IOP Publishing |
Title | Feature Extraction and Image Recognition with Convolutional Neural Networks |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/1087/6/062032 https://www.proquest.com/docview/2572553632 |
Volume | 1087 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwED_cRPBF_MT5MQr6aNjWJpfsSXRsfqEOP9C3kiYdCNrNbYp_vpc2VYbg-tCSNOnD5fq7X5LLHcCh1iGKNm8xlHLAOCaWKW0Fs4THymISyTyA6fUNnj_yy2fx7BfcJt6tssTEHKjt0Lg18gapFrHfCKPwePTOXNYot7vqU2hUYJEgWKkqLJ52b_p3JRZHdMniSGTIyNaq0sOLpn2-ro0EHEo2sNFEl018xj5VXoajPyCdW57eKqx4yhicFGO8Bgtptg5LueummWzAlWNxH-M06H5Nx8UxhUBnNrh4I6gI7koHIap1a65BZ5h9enWjj7rYHPkjdwafbMJjr_vQOWc-RQIzEU2WmEbuPO1SYp0GjUBuNM3xjLBtzhNN5MaIAW81DTa1DI2ObOgiBAqUWic0RGG0BdVsmKXbEAhFxt0gJ_5gOZEk1UqlsKFW1CltD1QNsBRMbHz8cJfG4jXO97GVip1EYydRV5QxxoVEa9D86TgqQmjM73JEko_97zSZ3_xgpvllv3M_2yIe2UEN9sqB_G36q1Y7_7_ehWXiSqpwL9uD6nT8ke4TH5kmdaio3lndqx6VLm77dL-Nnr4B0PbYFg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_xIcRepjGYVsZYpMHbrLaJfXYf0DQVSksBTaOV-uY5dipNGknXlG38U_sbd87HUDWJPpGXKM45Ui6Xu9_Z9wFwZEyIosPbDKWcMo6xY8o4wRzpY-UwjmRRwPTqGvtjfjERkzX4U-fC-LDKWicWitpl1q-RN0m0CP1GGIUfZz-Y7xrld1frFhqlWAyT-1_ksuUng1P6vsdh2Dsbdfus6irAbET-BTPIfXBaQkDNohXIrSG3yArX4Tw2hAesmPJ2y2LLyNCayIW-qJ5AaUxMb-ULHZDK3-QRWXKfmd47rzV_RIcsEzBDRpZd1fFk5GRWYx0kNaVkE5st9L3Ll6zh-rds9p9JKOxc7wU8rwBq8KmUqB1YS9KXsFUEitp8F4YeM97Nk-Ds92JeJkUEJnXB4JYUU_ClDkeiUb_CG3Sz9Gcl3PRQXwmkOBWh5_kejJ-Eda9gI83S5DUEQhGUsMgJrThOkEy1EylcaBRNSjpT1QCsGaNtVa3cN834rotdc6W056j2HPWXUqMuOdqA1r-Js7Jgx-opH4jzuvp589Xk75fILz53b5Yp9MxNG3BQf8gH0gch3n_89jvY7o-uLvXl4Hr4Bp4RSlNlYNsBbCzmd8lbQkKL-LAQvwC-PrW8_wXwIw_O |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4CMQF8RTjWQm4Uba1iZMdOKDBxBgv8RDcQpp0J-imbbz-GL8Ppw_QhBDiQC9tI6dJHNf-3DoOwJbWAfIaq_ooRNtnGFlfast9S_pYWoxCkSYwPT3Doxt2fMfvRuD9cy1Mp5ur_l26zBIFZyzMA-JkmTB04FMDSCVSlLFcQbcNeLlr23lwZSt-eyHXrb_XPKB53g6CxuF1_cjPdxfwTUh-hq-RuSC1mACbQcORGU3ukeG2xlikCRcY3mbVisGKFoHRoQ1ccj2OQuuIRucSHpDqH-chWTh6j87D28IChHSIbCGm66iURVzZz50fsoqjNPJvpiG1d40ZmM6BqrefsWUWRuJkDibSgFHTn4eWw45Pvdg7fB30ssURnk6s13wkBeVdFmFJVOq-9Hr1TvKcCzk91GUESU9pCHp_AW7-hXWLMJZ0kngJPC4JUhhkhFosI2gmq7HgNtCSKsW1tiwBFoxRJs9a7jbPeFDp33MpleOochx1t0KhyjhagspnxW6WuOP3KjvEeZW_xP3fyTeHyI8v6lfDFIpEsgSrxUR-kZKeJFcuxDBY_lubGzB5cdBQJ82z1gpMEXiTWbzbKowNek_xGgGkQbSeSqMH9_8t_h-cRhE- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extraction+and+Image+Recognition+with+Convolutional+Neural+Networks&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Liu%2C+Yu+Han&rft.date=2018-09-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1087&rft.spage=62032&rft_id=info:doi/10.1088%2F1742-6596%2F1087%2F6%2F062032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1087_6_062032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |