Feature Extraction and Image Recognition with Convolutional Neural Networks

The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 1087; no. 6; pp. 62032 - 62038
Main Author Liu, Yu Han
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by animal visual system. Convolution serves as a perfect realization of an optic nerve cell which merely responds to its receptive field and it performs well in image feature extraction. Being highly-hierarchical networks, CNN is structured with a series of different functional layers. The function blocks are separated and described clearly by each layer in this paper. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented.
AbstractList The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by animal visual system. Convolution serves as a perfect realization of an optic nerve cell which merely responds to its receptive field and it performs well in image feature extraction. Being highly-hierarchical networks, CNN is structured with a series of different functional layers. The function blocks are separated and described clearly by each layer in this paper. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented.
Author Liu, Yu Han
Author_xml – sequence: 1
  givenname: Yu Han
  surname: Liu
  fullname: Liu, Yu Han
  email: liuyhnnn@126.com
  organization: Glasgow College, University of Electronic Science and Technology of China , China
BookMark eNqNkF1LwzAUhoNMcJv-BgveCbNpPtsLL6RsOh0qflyHLE1nZ9fUpHX6721XmSiC5ua85-Q84c07AL3CFBqAwwCeBDAM_YATNGI0Yn7Tcp_5kCGI0Q7ob296Wx2Ge2Dg3BJC3BzeB1cTLavaam_8VlmpqswUniwSb7qSC-3daWUWRbaZrrPqyYtN8Wryuh3I3LvWtd2Uam3ss9sHu6nMnT74rEPwOBk_xBej2c35ND6bjRRGIRpJRuYpSXQYJIopyoiSAWxEEhEyl5A2MiUBVAxKjpTECUIkQpRxKec0IggPwVH3bmnNS61dJZamto0hJxDliFLMcLt12m0pa5yzOhUqq2TrvPlolosAijY_0SYj2pTalgsmuvwanv_gS5utpH3_B4k7MjPll7W_qeNfqMvb-P77oiiTFH8Apw-SFA
CitedBy_id crossref_primary_10_17341_gazimmfd_541677
crossref_primary_10_1002_esp_5833
crossref_primary_10_3390_diagnostics13122106
crossref_primary_10_1109_TCBB_2020_3034313
crossref_primary_10_1002_ima_22695
crossref_primary_10_1515_eng_2024_0101
crossref_primary_10_25130_tjes_31_3_19
crossref_primary_10_22382_wfs_2023_10
crossref_primary_10_1016_j_buildenv_2023_111126
crossref_primary_10_1016_j_jneumeth_2024_110158
crossref_primary_10_1109_LES_2024_3370634
crossref_primary_10_1364_AO_533586
crossref_primary_10_1088_2051_672X_aca10f
crossref_primary_10_3390_rs15194804
crossref_primary_10_1007_s42979_024_02615_9
crossref_primary_10_1016_j_cmpb_2020_105635
crossref_primary_10_1088_1674_1056_ad1926
crossref_primary_10_3390_cancers14215382
crossref_primary_10_3390_rs16050801
crossref_primary_10_3390_horticulturae8060470
crossref_primary_10_1109_ACCESS_2021_3074088
crossref_primary_10_1109_JSTARS_2021_3128938
crossref_primary_10_1109_ACCESS_2024_3523069
crossref_primary_10_3389_frobt_2023_1106439
crossref_primary_10_3390_s20174675
crossref_primary_10_1007_s12553_021_00620_z
crossref_primary_10_1371_journal_pone_0304017
crossref_primary_10_3390_rs16224141
crossref_primary_10_3389_fchem_2021_820417
crossref_primary_10_3390_rs15071821
crossref_primary_10_1016_j_engappai_2024_109217
crossref_primary_10_1002_mgea_68
crossref_primary_10_1007_s10694_023_01426_3
crossref_primary_10_1016_j_istruc_2023_105019
crossref_primary_10_3390_electronics9081257
crossref_primary_10_56294_dm2024_592
crossref_primary_10_32604_iasc_2022_019778
crossref_primary_10_1007_s11042_022_13182_7
crossref_primary_10_1109_TIFS_2023_3312973
crossref_primary_10_3390_su151914045
crossref_primary_10_1007_s00521_023_08283_9
crossref_primary_10_1371_journal_pone_0268962
crossref_primary_10_1145_3702208
crossref_primary_10_1038_s41467_022_33239_3
crossref_primary_10_3390_rs15040895
crossref_primary_10_1155_2023_9790005
crossref_primary_10_3233_JIFS_220061
crossref_primary_10_1080_15538362_2021_2023069
crossref_primary_10_3390_ijerph191912095
crossref_primary_10_1007_s10661_022_10118_4
crossref_primary_10_1016_j_geoen_2023_211802
crossref_primary_10_3390_brainsci11070902
crossref_primary_10_3390_electronics13193814
crossref_primary_10_1063_5_0206387
crossref_primary_10_18778_0208_6018_362_04
crossref_primary_10_26599_TST_2021_9010072
crossref_primary_10_26634_jaim_2_1_20225
Cites_doi 10.1109/IJCNN.1989.118638
10.1109/5.726791
10.1109/29.21701
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1087/6/062032
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Feature Extraction and Image Recognition with Convolutional Neural Networks
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1087_6_062032
JPCS_1087_6_062032
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
AALHV
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EJD
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
02O
1WK
AAYXX
ACARI
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
C1A
CITATION
FEDTE
H13
HVGLF
JCGBZ
M48
OVT
PHGZM
PHGZT
Q02
S3P
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3282-a64bf4de81dc6c564ca106c5d944ba056c5f410c60a72ca3d22492567aab59423
IEDL.DBID BENPR
ISSN 1742-6588
IngestDate Sun Jul 13 04:33:39 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Tue Jul 01 03:53:52 EDT 2025
Wed Aug 21 03:40:17 EDT 2024
Fri Jan 08 09:41:26 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
http://iopscience.iop.org/info/page/text-and-data-mining
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3282-a64bf4de81dc6c564ca106c5d944ba056c5f410c60a72ca3d22492567aab59423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2572553632?pq-origsite=%requestingapplication%
PQID 2572553632
PQPubID 4998668
PageCount 7
ParticipantIDs proquest_journals_2572553632
crossref_citationtrail_10_1088_1742_6596_1087_6_062032
crossref_primary_10_1088_1742_6596_1087_6_062032
iop_journals_10_1088_1742_6596_1087_6_062032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 20180901
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Jain A. K. (1) 2011
4
5
LeCun Y. (10) 2013
Glorot X (9) 2011; 130
7
Koushik J. (3) 2016
Theano Development Team (6)
Szeliski R. (2) 2010
Jarrett K (8) 2010; 30
References_xml – year: 2011
  ident: 1
  publication-title: Handbook of face recognition
– ident: 4
  doi: 10.1109/IJCNN.1989.118638
– start-page: 11
  year: 2010
  ident: 2
  publication-title: Computer Vision: Algorithms and Applications
– volume: 130
  start-page: 297
  year: 2011
  ident: 9
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligencs & Statistics, (AISTATS)
– volume: 30
  start-page: 2146
  year: 2010
  ident: 8
  publication-title: IEEE International Conference on Computer Vision
– ident: 6
– ident: 5
  doi: 10.1109/5.726791
– year: 2013
  ident: 10
– year: 2016
  ident: 3
– ident: 7
  doi: 10.1109/29.21701
SSID ssj0033337
Score 2.5499158
Snippet The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 62032
SubjectTerms Algorithms
Artificial neural networks
Feature extraction
Feature recognition
Neural networks
Object recognition
Physics
Structural hierarchy
Taste
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9uIvjitzidUtBHu3VtcskeZWzMiTrUwd5KmnQvaje2TsS_3kvTqlNkiH3pB3dJek0vv7S_uxByJqUPrEkbLnA-cilE2hVSM1ejPxYaooBnCUyvb6A7oL0hG36NhRlPctdfw0ObKNiaMCfEiTpiaN_FCgCvCF6HugdmGfASWQ0Ejp8miO-2X3jjADdugyKNkhAFx-v3ghZGqBK24oebzsaeziZRRast5eSxNk-jmnr7ltDxf7e1RTZyaOpcWI1tshInO2Qto4iq2S65MmhxPo2d9ms6teEQjky0c_mMLsm5K4hIeNV823Va4-Ql79ZYqMkBku0y0vlsjww67YdW182XYnBVgJMyVwI1jL4Y0a0CxYAqiXNJxXST0kgiiFJsRBueAk9yX8lA-yYTIQMuZYRdwQ_2STkZJ_EBcZhAEKGAIk7RFMGYaMScaV8KVIqbI1EhUJg_VHmecrNcxlOY_S8XIjSWCo2lzCkPIbSWqhDvQ3FiU3UsVznHxxHmr-1sufjpgniv37pflAgnelQh1aK7fIqiZ8TJWwCBf_i3Oo_IOmI0YWltVVJOp_P4GHFQGp1kHf0dK570Jg
  priority: 102
  providerName: IOP Publishing
Title Feature Extraction and Image Recognition with Convolutional Neural Networks
URI https://iopscience.iop.org/article/10.1088/1742-6596/1087/6/062032
https://www.proquest.com/docview/2572553632
Volume 1087
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwED_cRPBF_MT5MQr6aNjWJpfsSXRsfqEOP9C3kiYdCNrNbYp_vpc2VYbg-tCSNOnD5fq7X5LLHcCh1iGKNm8xlHLAOCaWKW0Fs4THymISyTyA6fUNnj_yy2fx7BfcJt6tssTEHKjt0Lg18gapFrHfCKPwePTOXNYot7vqU2hUYJEgWKkqLJ52b_p3JRZHdMniSGTIyNaq0sOLpn2-ro0EHEo2sNFEl018xj5VXoajPyCdW57eKqx4yhicFGO8Bgtptg5LueummWzAlWNxH-M06H5Nx8UxhUBnNrh4I6gI7koHIap1a65BZ5h9enWjj7rYHPkjdwafbMJjr_vQOWc-RQIzEU2WmEbuPO1SYp0GjUBuNM3xjLBtzhNN5MaIAW81DTa1DI2ObOgiBAqUWic0RGG0BdVsmKXbEAhFxt0gJ_5gOZEk1UqlsKFW1CltD1QNsBRMbHz8cJfG4jXO97GVip1EYydRV5QxxoVEa9D86TgqQmjM73JEko_97zSZ3_xgpvllv3M_2yIe2UEN9sqB_G36q1Y7_7_ehWXiSqpwL9uD6nT8ke4TH5kmdaio3lndqx6VLm77dL-Nnr4B0PbYFg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED_xIcRepjGYVsZYpMHbrLaJfXYf0DQVSksBTaOV-uY5dipNGknXlG38U_sbd87HUDWJPpGXKM45Ui6Xu9_Z9wFwZEyIosPbDKWcMo6xY8o4wRzpY-UwjmRRwPTqGvtjfjERkzX4U-fC-LDKWicWitpl1q-RN0m0CP1GGIUfZz-Y7xrld1frFhqlWAyT-1_ksuUng1P6vsdh2Dsbdfus6irAbET-BTPIfXBaQkDNohXIrSG3yArX4Tw2hAesmPJ2y2LLyNCayIW-qJ5AaUxMb-ULHZDK3-QRWXKfmd47rzV_RIcsEzBDRpZd1fFk5GRWYx0kNaVkE5st9L3Ll6zh-rds9p9JKOxc7wU8rwBq8KmUqB1YS9KXsFUEitp8F4YeM97Nk-Ds92JeJkUEJnXB4JYUU_ClDkeiUb_CG3Sz9Gcl3PRQXwmkOBWh5_kejJ-Eda9gI83S5DUEQhGUsMgJrThOkEy1EylcaBRNSjpT1QCsGaNtVa3cN834rotdc6W056j2HPWXUqMuOdqA1r-Js7Jgx-opH4jzuvp589Xk75fILz53b5Yp9MxNG3BQf8gH0gch3n_89jvY7o-uLvXl4Hr4Bp4RSlNlYNsBbCzmd8lbQkKL-LAQvwC-PrW8_wXwIw_O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4CMQF8RTjWQm4Uba1iZMdOKDBxBgv8RDcQpp0J-imbbz-GL8Ppw_QhBDiQC9tI6dJHNf-3DoOwJbWAfIaq_ooRNtnGFlfast9S_pYWoxCkSYwPT3Doxt2fMfvRuD9cy1Mp5ur_l26zBIFZyzMA-JkmTB04FMDSCVSlLFcQbcNeLlr23lwZSt-eyHXrb_XPKB53g6CxuF1_cjPdxfwTUh-hq-RuSC1mACbQcORGU3ukeG2xlikCRcY3mbVisGKFoHRoQ1ccj2OQuuIRucSHpDqH-chWTh6j87D28IChHSIbCGm66iURVzZz50fsoqjNPJvpiG1d40ZmM6BqrefsWUWRuJkDibSgFHTn4eWw45Pvdg7fB30ssURnk6s13wkBeVdFmFJVOq-9Hr1TvKcCzk91GUESU9pCHp_AW7-hXWLMJZ0kngJPC4JUhhkhFosI2gmq7HgNtCSKsW1tiwBFoxRJs9a7jbPeFDp33MpleOochx1t0KhyjhagspnxW6WuOP3KjvEeZW_xP3fyTeHyI8v6lfDFIpEsgSrxUR-kZKeJFcuxDBY_lubGzB5cdBQJ82z1gpMEXiTWbzbKowNek_xGgGkQbSeSqMH9_8t_h-cRhE-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Extraction+and+Image+Recognition+with+Convolutional+Neural+Networks&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Liu%2C+Yu+Han&rft.date=2018-09-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1087&rft.spage=62032&rft_id=info:doi/10.1088%2F1742-6596%2F1087%2F6%2F062032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_1087_6_062032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon