Feature Extraction and Image Recognition with Convolutional Neural Networks
The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by...
Saved in:
Published in | Journal of physics. Conference series Vol. 1087; no. 6; pp. 62032 - 62038 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The human has a very complex perception system, including vision, auditory, olfactory, touch, and gustation. This paper will introduce the recent studies about providing a technical solution for image recognition, by applying a algorithm called Convolutional Neural Network (CNN) which is inspired by animal visual system. Convolution serves as a perfect realization of an optic nerve cell which merely responds to its receptive field and it performs well in image feature extraction. Being highly-hierarchical networks, CNN is structured with a series of different functional layers. The function blocks are separated and described clearly by each layer in this paper. Additionally, the recognition process and result of a pioneering CNN on MNIST database are presented. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1087/6/062032 |