Rewritable Photoluminescence and Structural Color Display for Dual‐Responsive Optical Encryption

Optical encryption using coloration and photoluminescent (PL) materials can provide highly secure data protection with direct and intuitive identification of encrypted information. Encryption capable of independently controlling wavelength‐tunable coloration as well as variable light intensity PL is...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 14; pp. e2310130 - n/a
Main Authors Han, Hyowon, Oh, Jin Woo, Lee, Hyeokjung, Lee, Seokyeong, Mun, Seungsoo, Jeon, Seungbae, Kim, Dongjun, Jang, Jihye, Jiang, Wei, Kim, Taebin, Jeong, Beomjin, Kim, Jiwon, Ryu, Du Yeol, Park, Cheolmin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Optical encryption using coloration and photoluminescent (PL) materials can provide highly secure data protection with direct and intuitive identification of encrypted information. Encryption capable of independently controlling wavelength‐tunable coloration as well as variable light intensity PL is not adequately demonstrated yet. Herein, a rewritable PL and structural color (SC) display suitable for dual‐responsive optical encryption developed with a stimuli‐responsive SC of a block copolymer (BCP) photonic crystal (PC) with alternating in‐plane lamellae, of which a variety of 3D and 2D perovskite nanocrystals is preferentially self‐assembled with characteristic PL, is presented. The SC of a BCP PC is controlled in the visible range with different perovskite precursor doping times. The perovskite nanocrystals developed in the BCP PC are highly luminescent, with a PL quantum yield of ≈33.7%, yielding environmentally stable SC and PL dual‐mode displays. The independently programmed SC and PL information is erasable and rewritable. Dual‐responsive optical encryption is demonstrated, in which true Morse code information is deciphered only when the information encoded by SCs is properly combined with PL information. Numerous combinations of SC and PL realize high security level of data anticounterfeiting. This dual‐mode encryption display offers novel optical encryption with high information security and anti‐counterfeiting. Both wavelength‐tunable coloration and light intensity‐tunable photoluminescence are independently and reliably manipulated in the thin polymer‐based film. A rewritable dual‐responsive encryption display that has the benefit of direct and intuitive identification of encrypted information by the human eye is presented, enabling high information security and anti‐counterfeiting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202310130