Electrical properties of α-Ir2O3/α-Ga2O3 pn heterojunction diode and band alignment of the heterostructure
Corundum-structured iridium oxide (α-Ir2O3), showing p-type conductivity, is a strong candidate to form high-quality pn heterojunctions with α-Ga2O3. We fabricated α-Ir2O3/α-Ga2O3 pn heterojunction diodes and they showed well-defined rectifying current-voltage (I-V) characteristics with the turn-on...
Saved in:
Published in | Applied physics letters Vol. 113; no. 21 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
19.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Corundum-structured iridium oxide (α-Ir2O3), showing p-type conductivity, is a strong candidate to form high-quality pn heterojunctions with α-Ga2O3. We fabricated α-Ir2O3/α-Ga2O3 pn heterojunction diodes and they showed well-defined rectifying current-voltage (I-V) characteristics with the turn-on voltage of about 2.0 V. The band alignment at the α-Ir2O3/α-Ga2O3 interface was investigated by X-ray photoemission spectroscopy, revealing a staggered-gap (type-II) with the valence- and conduction-band offsets of 3.34 eV and 1.04 eV, respectively. The total barrier height for electrons was about 2.4 eV, which reasonably agreed with the turn-on voltage in the I-V characteristics. This means that electrons are mainly attributed to electrical conduction around the turn-on voltage. |
---|---|
AbstractList | Corundum-structured iridium oxide (α-Ir2O3), showing p-type conductivity, is a strong candidate to form high-quality pn heterojunctions with α-Ga2O3. We fabricated α-Ir2O3/α-Ga2O3 pn heterojunction diodes and they showed well-defined rectifying current-voltage (I-V) characteristics with the turn-on voltage of about 2.0 V. The band alignment at the α-Ir2O3/α-Ga2O3 interface was investigated by X-ray photoemission spectroscopy, revealing a staggered-gap (type-II) with the valence- and conduction-band offsets of 3.34 eV and 1.04 eV, respectively. The total barrier height for electrons was about 2.4 eV, which reasonably agreed with the turn-on voltage in the I-V characteristics. This means that electrons are mainly attributed to electrical conduction around the turn-on voltage. |
Author | Takemoto, Shu Kaneko, Kentaro Kan, Shin-ichi Sugimoto, Masahiro Shinohe, Takashi Takahashi, Isao Fujita, Shizuo |
Author_xml | – sequence: 1 givenname: Shin-ichi surname: Kan fullname: Kan, Shin-ichi organization: Department of Electronic Science and Engineering, Kyoto University, Katsura – sequence: 2 givenname: Shu surname: Takemoto fullname: Takemoto, Shu organization: Department of Electronic Science and Engineering, Kyoto University, Katsura – sequence: 3 givenname: Kentaro surname: Kaneko fullname: Kaneko, Kentaro organization: 3FLOSFIA INC., Kyo-dai-Katsura Venture Plaza, Katsura, Nishikyo-ku, Kyoto 615-8245, Japan – sequence: 4 givenname: Isao surname: Takahashi fullname: Takahashi, Isao organization: FLOSFIA INC., Kyo-dai-Katsura Venture Plaza, Katsura – sequence: 5 givenname: Masahiro surname: Sugimoto fullname: Sugimoto, Masahiro organization: FLOSFIA INC., Kyo-dai-Katsura Venture Plaza, Katsura – sequence: 6 givenname: Takashi surname: Shinohe fullname: Shinohe, Takashi organization: FLOSFIA INC., Kyo-dai-Katsura Venture Plaza, Katsura – sequence: 7 givenname: Shizuo surname: Fujita fullname: Fujita, Shizuo organization: 3FLOSFIA INC., Kyo-dai-Katsura Venture Plaza, Katsura, Nishikyo-ku, Kyoto 615-8245, Japan |
BookMark | eNp9kN9KwzAUxoNMcJte-AYFrxTq8qdN00sZcw4Gu9l9SdMT19GlNUkFH8sX8ZlM2UQQFUJyAr_vO-d8EzQyrQGErgm-J5izGblPcZqEc4bGBGdZzAgRIzTGGLOY5ym5QBPn9uGbUsbGqFk0oLytlWyizrYdWF-Di1odfbzHK0s3bBaKpQxF1JloBx5su--N8nVroqpuK4ikqaJyuGRTP5sDGD_o_Q5OuPO2V763cInOtWwcXJ3eKdo-Lrbzp3i9Wa7mD-tYMZr5WOc6KTVOeKJ4UgFJy1JgzIEzrsqsZIJUCcgMhMh1VtFcCU4pLbEQGcOpZlN0c7QNC7304Hyxb3trQseCEsap4CTngbo9UipM6CzoorP1Qdq3guBiyLIgxSnLwM5-sKr2cojAW1k3vyrujgr3Rf5r_yf82tpvsOgqzT4BAC-UfQ |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1002_crat_202300311 crossref_primary_10_1103_PhysRevB_109_235205 crossref_primary_10_1063_5_0056630 crossref_primary_10_1063_5_0074260 crossref_primary_10_3390_mi15010133 crossref_primary_10_1063_5_0220211 crossref_primary_10_2472_jsms_70_369 crossref_primary_10_1021_acsomega_2c03345 crossref_primary_10_1063_1_5126325 crossref_primary_10_1016_j_ijleo_2021_167515 crossref_primary_10_1002_pssr_202400388 crossref_primary_10_1116_6_0002453 crossref_primary_10_1116_6_0002651 crossref_primary_10_1063_5_0232200 crossref_primary_10_1063_5_0085360 crossref_primary_10_1116_6_0002257 crossref_primary_10_35848_1347_4065_acc03b crossref_primary_10_1063_5_0232445 crossref_primary_10_1063_5_0069554 crossref_primary_10_1149_2162_8777_ac66fd crossref_primary_10_1021_acsaelm_2c00101 crossref_primary_10_1063_5_0141199 crossref_primary_10_1557_s43578_023_01015_8 crossref_primary_10_1016_j_apsusc_2023_157337 crossref_primary_10_1021_acsnano_1c06567 crossref_primary_10_1109_TPEL_2019_2946367 crossref_primary_10_1149_2162_8777_ac9edb crossref_primary_10_7567_1882_0786_ab420e crossref_primary_10_3390_nano13010072 crossref_primary_10_7567_1347_4065_ab2195 crossref_primary_10_1016_j_mtadv_2024_100499 crossref_primary_10_1109_TED_2022_3154682 crossref_primary_10_1016_j_apsusc_2020_147276 crossref_primary_10_1557_s43578_021_00439_4 crossref_primary_10_1021_acs_chemmater_0c01497 crossref_primary_10_1016_j_mtphys_2019_100157 crossref_primary_10_1063_1_5142999 crossref_primary_10_1088_1361_6463_abfe37 crossref_primary_10_1063_5_0214500 crossref_primary_10_1109_TED_2024_3360016 crossref_primary_10_1116_6_0002144 crossref_primary_10_1063_5_0068097 crossref_primary_10_35848_1882_0786_ab9fc5 crossref_primary_10_35848_1882_0786_abbfe2 crossref_primary_10_1088_1361_6641_ab97f5 crossref_primary_10_1063_5_0147787 crossref_primary_10_1063_5_0038349 crossref_primary_10_1063_5_0090832 crossref_primary_10_15826_chimtech_2024_11_2_08 crossref_primary_10_1016_j_apsusc_2022_154559 crossref_primary_10_1063_5_0027297 crossref_primary_10_1063_5_0225128 crossref_primary_10_2472_jsms_68_733 crossref_primary_10_1088_1361_6463_ac7c44 crossref_primary_10_3390_coatings12050645 crossref_primary_10_35848_1347_4065_acd125 crossref_primary_10_1063_5_0028985 crossref_primary_10_1109_TED_2020_3001249 crossref_primary_10_1007_s13391_021_00333_5 crossref_primary_10_1149_2162_8777_aba729 crossref_primary_10_1016_j_mssp_2024_109063 crossref_primary_10_1063_5_0126698 crossref_primary_10_1063_1_5120554 crossref_primary_10_1186_s11671_019_3181_x crossref_primary_10_1063_1_5100589 crossref_primary_10_1063_1_5112067 crossref_primary_10_1063_5_0031442 crossref_primary_10_1063_1_5126150 crossref_primary_10_3390_ma15238280 crossref_primary_10_1002_pssb_202400672 crossref_primary_10_1103_PhysRevB_108_075137 crossref_primary_10_1063_5_0047710 crossref_primary_10_1063_5_0173544 crossref_primary_10_1063_5_0060785 crossref_primary_10_1016_j_mtcomm_2022_104244 crossref_primary_10_1063_5_0046538 crossref_primary_10_1016_j_actamat_2021_117423 crossref_primary_10_1063_5_0205892 crossref_primary_10_1063_5_0206863 crossref_primary_10_1116_1_5138715 crossref_primary_10_1109_TED_2023_3339404 crossref_primary_10_1039_D1TC00223F crossref_primary_10_1063_5_0057704 crossref_primary_10_1002_pssa_202300958 |
Cites_doi | 10.1143/APEX.5.035502 10.1063/1.2756085 10.1063/1.5037678 10.2472/jsms.55.153 10.1063/1.4876920 10.7567/JJAP.53.05FF08 10.1016/j.snb.2010.05.030 10.1143/JJAP.45.L857 10.1063/1.1330559 10.7567/JJAP.55.1202A3 10.1063/1.3674287 10.1103/PhysRevB.74.195123 10.7567/JJAP.55.1202BA 10.7567/APEX.9.071101 10.1016/S0169-4332(02)01191-1 10.7567/JJAP.55.1202B4 10.1143/JJAP.48.011605 10.1063/1.4998311 10.1103/PhysRev.140.A316 10.1143/JJAP.46.6811 10.1557/adv.2018.45 10.7567/APEX.9.091101 10.7567/JJAP.51.040207 10.1063/1.4821858 10.1016/j.jcrysgro.2014.02.051 10.1063/1.2716994 10.7567/JJAP.51.070203 10.1016/0925-4005(91)80148-D 10.1021/ja01123a039 10.7567/APEX.9.021101 10.1016/j.jcrysgro.2015.12.013 10.1143/JJAP.44.L7 10.7567/JJAP.57.040314 10.7567/JJAP.57.02CB18 10.1063/1.5037095 10.1002/pssc.200674877 10.7567/JJAP.51.020201 10.1143/JJAP.47.7311 10.1016/j.jcrysgro.2014.02.032 10.1063/1.4807651 10.1143/APEX.1.011202 |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5054054 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_5054054 apl |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-f9f4bf0464c64de15bb8006e636cb7b381d4ea7e889f7d29c86222b0887305f3 |
ISSN | 0003-6951 |
IngestDate | Sun Jun 29 15:39:52 EDT 2025 Tue Jul 01 01:16:09 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Sun Jul 14 11:11:22 EDT 2019 Fri Jun 21 00:14:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Published by AIP Publishing. 0003-6951/2018/113(21)/212104/5/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-f9f4bf0464c64de15bb8006e636cb7b381d4ea7e889f7d29c86222b0887305f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2136286196 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1063_1_5054054 proquest_journals_2136286196 crossref_citationtrail_10_1063_1_5054054 scitation_primary_10_1063_1_5054054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181119 2018-11-19 |
PublicationDateYYYYMMDD | 2018-11-19 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181119 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2018 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Bartic, Ogita, Isai, Baban, Suzuki (c2) 2007 Kokubun, Kubo, Nakagomi (c31) 2016 Kaneko, Suzuki, Ito, Fujita (c25) 2016 Akaiwa, Fujita (c17) 2012 Orita, Ohta, Hirano, Hosono (c4) 2000 Higashiwaki, Sasaki, Kuramata, Masui, Yamakoshi (c10) 2012 Shinohara, Fujita (c14) 2008 Jinno, Uchida, Kaneko, Fujita (c24) 2016 Akaiwa, Kaneko, Ichino, Fujita (c20) 2016 Kamimura, Sasaki, Wong, Krishnamurthy, Kuramata, Masui, Yamakoshi, Higashiwaki (c40) 2014 Ohira, Suzuki, Minami, Takahashi, Araki, Nanishi (c6) 2007 Tippins (c13) 1965 Uchida, Jinno, Takemoto, Kaneko, Fujita (c26) 2018 Oda, Tokuda, Kambara, Tanikawa, Sasaki, Hitora (c28) 2016 Nishinaka, Kawaharamura, Fujita (c38) 2007 Stegmeier, Fleischer, Hauptmann (c3) 2010 Kawaharamura, Dang, Furuta (c16) 2012 Fleischer, Meixner (c1) 1991 Roy, Hill, Osborn (c12) 1952 Shimamura, Víllora, Domen, Yui, Aoki, Ichinose (c5) 2005 He, Orlando, Blanco, Pandey, Amzallag, Baraille, Rérat (c42) 2006 Kawar, Chigare, Patil (c34) 2003 Kawaharamura (c39) 2014 Kaneko, Kawanowa, Ito, Fujita (c15) 2012 Oshima, Okuno, Arai, Suzuki, Hino, Fujita (c8) 2009 Suzuki, Kaneko, Fujita (c22) 2014 Kamada, Kawaharamura, Nishinaka, Fujita (c37) 2006 King, Veal, Jefferson, McConville, Wang, Parbrook, Lu, Schaff (c41) 2007 Kaneko, Kakeya, Komori, Fujita (c33) 2013 Oshima, Okuno, Arai, Suzuki, Ohira, Fujita (c7) 2008 Higashiwaki, Sasaki, Kamimura, Wong, Krishnamurthy, Kuramata, Masui, Yamakoshi (c11) 2013 Fujita, Oda, Kaneko, Hitora (c18) 2016 Fujita, Kaneko (c23) 2014 Watahiki, Yuda, Furukawa, Yamamuka, Takiguchi, Miyajima (c32) 2017 Sasaki, Kuramata, Masui, Víllora, Shimamura, Yamakoshi (c9) 2012 Uchida, Kaneko, Fujita (c21) 2018 Zhang, Joishi, Xia, Brenner, Lodha, Rajan (c30) 2018 Kaneko, Fujita, Hitora (c29) 2018 Kawaharamura, Nishinaka, Kametani, Masuda, Tanigaki, Fujita (c36) 2006 Dang, Yasuoka, Tagashira, Tadokoro, Theiss, Kawaharamura (c27) 2018 Oda, Kaneko, Fujita, Hitora (c19) 2016 (2023061715450338500_c16) 2012; 51 (2023061715450338500_c36) 2006; 55 (2023061715450338500_c21) 2018; 3 (2023061715450338500_c32) 2017; 111 (2023061715450338500_c7) 2008; 1 (2023061715450338500_c34) 2003; 206 (2023061715450338500_c33) 2013; 113 (2023061715450338500_c18) 2016; 55 (2023061715450338500_c35) 2018 (2023061715450338500_c14) 2008; 47 (2023061715450338500_c29) 2018; 57 (2023061715450338500_c41) 2007; 90 (2023061715450338500_c2) 2007; 102 (2023061715450338500_c24) 2016; 9 (2023061715450338500_c42) 2006; 74 (2023061715450338500_c11) 2013; 103 (2023061715450338500_c27) 2018; 113 (2023061715450338500_c20) 2016; 55 (2023061715450338500_c23) 2014; 401 (2023061715450338500_c30) 2018; 112 (2023061715450338500_c39) 2014; 53 (2023061715450338500_c3) 2010; 148 (2023061715450338500_c6) 2007; 4 (2023061715450338500_c19) 2016; 55 (2023061715450338500_c26) 2018; 57 (2023061715450338500_c31) 2016; 9 (2023061715450338500_c28) 2016; 9 (2023061715450338500_c15) 2012; 51 (2023061715450338500_c25) 2016; 436 (2023061715450338500_c22) 2014; 401 (2023061715450338500_c13) 1965; 140 (2023061715450338500_c1) 1991; 4 (2023061715450338500_c5) 2005; 44 (2023061715450338500_c9) 2012; 5 (2023061715450338500_c17) 2012; 51 (2023061715450338500_c38) 2007; 46 (2023061715450338500_c12) 1952; 74 (2023061715450338500_c10) 2012; 100 (2023061715450338500_c8) 2009; 48 (2023061715450338500_c37) 2006; 45 (2023061715450338500_c4) 2000; 77 (2023061715450338500_c40) 2014; 104 |
References_xml | – start-page: 062102 year: 2018 ident: c27 publication-title: Appl. Phys. Lett. – start-page: 132105 year: 2007 ident: c41 publication-title: Appl. Phys. Lett. – start-page: 2306 year: 2007 ident: c6 publication-title: Phys. Status Solidi – start-page: 153 year: 2006 ident: c36 publication-title: J. Soc. Mater. Sci. – start-page: 023709 year: 2007 ident: c2 publication-title: J. Appl. Phys. – start-page: 233901 year: 2013 ident: c33 publication-title: J. Appl. Phys. – start-page: 90 year: 2003 ident: c34 publication-title: Appl. Surf. Sci. – start-page: 123511 year: 2013 ident: c11 publication-title: Appl. Phys. Lett. – start-page: 222104 year: 2017 ident: c32 publication-title: Appl. Phys. Lett. – start-page: 192104 year: 2014 ident: c40 publication-title: Appl. Phys. Lett. – start-page: 011202 year: 2008 ident: c7 publication-title: Appl. Phys. Express – start-page: 013504 year: 2012 ident: c10 publication-title: Appl. Phys. Lett. – start-page: 040207 year: 2012 ident: c16 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 1202A3 year: 2016 ident: c18 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 091101 year: 2016 ident: c31 publication-title: Appl. Phys. Express – start-page: L857 year: 2006 ident: c37 publication-title: Jpn. J. Appl. Phys., Part 2 – start-page: 439 year: 2010 ident: c3 publication-title: Sens. Actuators B – start-page: 020201 year: 2012 ident: c15 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 1202B4 year: 2016 ident: c19 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 021101 year: 2016 ident: c28 publication-title: Appl. Phys. Express – start-page: 195123 year: 2006 ident: c42 publication-title: Phys. Rev. B – start-page: L7 year: 2005 ident: c5 publication-title: Jpn. J. Appl. Phys., Part 2 – start-page: 233503 year: 2018 ident: c30 publication-title: Appl. Phys. Lett. – start-page: 7311 year: 2008 ident: c14 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 719 year: 1952 ident: c12 publication-title: J. Am. Chem. Soc. – start-page: 011605 year: 2009 ident: c8 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 035502 year: 2012 ident: c9 publication-title: Appl. Phys. Express – start-page: 4166 year: 2000 ident: c4 publication-title: Appl. Phys. Lett. – start-page: 437 year: 1991 ident: c1 publication-title: Sens. Actuators B – start-page: 150 year: 2016 ident: c25 publication-title: J. Cryst. Growth – start-page: A316 year: 1965 ident: c13 publication-title: Phys. Rev. – start-page: 1202BA year: 2016 ident: c20 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 040314 year: 2018 ident: c26 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 05FF08 year: 2014 ident: c39 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 070203 year: 2012 ident: c17 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 588 year: 2014 ident: c23 publication-title: J. Cryst. Growth – start-page: 670 year: 2014 ident: c22 publication-title: J. Cryst. Growth – start-page: 071101 year: 2016 ident: c24 publication-title: Appl. Phys. Express – start-page: 6811 year: 2007 ident: c38 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 171 year: 2018 ident: c21 publication-title: MRS Adv. – start-page: 02CB18 year: 2018 ident: c29 publication-title: Jpn. J. Appl. Phys., Part 1 – volume: 5 start-page: 035502 year: 2012 ident: 2023061715450338500_c9 publication-title: Appl. Phys. Express doi: 10.1143/APEX.5.035502 – volume: 102 start-page: 023709 year: 2007 ident: 2023061715450338500_c2 publication-title: J. Appl. Phys. doi: 10.1063/1.2756085 – volume: 113 start-page: 062102 year: 2018 ident: 2023061715450338500_c27 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5037678 – volume: 55 start-page: 153 year: 2006 ident: 2023061715450338500_c36 publication-title: J. Soc. Mater. Sci. doi: 10.2472/jsms.55.153 – volume: 104 start-page: 192104 year: 2014 ident: 2023061715450338500_c40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4876920 – volume: 53 start-page: 05FF08 year: 2014 ident: 2023061715450338500_c39 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.53.05FF08 – volume: 148 start-page: 439 year: 2010 ident: 2023061715450338500_c3 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.05.030 – volume: 45 start-page: L857 year: 2006 ident: 2023061715450338500_c37 publication-title: Jpn. J. Appl. Phys., Part 2 doi: 10.1143/JJAP.45.L857 – volume: 77 start-page: 4166 year: 2000 ident: 2023061715450338500_c4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1330559 – volume: 55 start-page: 1202A3 year: 2016 ident: 2023061715450338500_c18 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.55.1202A3 – volume: 100 start-page: 013504 year: 2012 ident: 2023061715450338500_c10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3674287 – volume: 74 start-page: 195123 year: 2006 ident: 2023061715450338500_c42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.195123 – volume: 55 start-page: 1202BA year: 2016 ident: 2023061715450338500_c20 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.55.1202BA – volume: 9 start-page: 071101 year: 2016 ident: 2023061715450338500_c24 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.071101 – volume: 206 start-page: 90 year: 2003 ident: 2023061715450338500_c34 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(02)01191-1 – volume: 55 start-page: 1202B4 year: 2016 ident: 2023061715450338500_c19 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.55.1202B4 – volume: 48 start-page: 011605 year: 2009 ident: 2023061715450338500_c8 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.48.011605 – volume: 111 start-page: 222104 year: 2017 ident: 2023061715450338500_c32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4998311 – volume: 140 start-page: A316 year: 1965 ident: 2023061715450338500_c13 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A316 – volume: 46 start-page: 6811 year: 2007 ident: 2023061715450338500_c38 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.46.6811 – volume: 3 start-page: 171 year: 2018 ident: 2023061715450338500_c21 publication-title: MRS Adv. doi: 10.1557/adv.2018.45 – volume: 9 start-page: 091101 year: 2016 ident: 2023061715450338500_c31 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.091101 – volume: 51 start-page: 040207 year: 2012 ident: 2023061715450338500_c16 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.51.040207 – volume: 103 start-page: 123511 year: 2013 ident: 2023061715450338500_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4821858 – volume: 401 start-page: 670 year: 2014 ident: 2023061715450338500_c22 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.02.051 – volume: 90 start-page: 132105 year: 2007 ident: 2023061715450338500_c41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2716994 – volume: 51 start-page: 070203 year: 2012 ident: 2023061715450338500_c17 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.51.070203 – volume: 4 start-page: 437 year: 1991 ident: 2023061715450338500_c1 publication-title: Sens. Actuators B doi: 10.1016/0925-4005(91)80148-D – volume: 74 start-page: 719 year: 1952 ident: 2023061715450338500_c12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01123a039 – volume: 9 start-page: 021101 year: 2016 ident: 2023061715450338500_c28 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.021101 – year: 2018 ident: 2023061715450338500_c35 – volume: 436 start-page: 150 year: 2016 ident: 2023061715450338500_c25 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2015.12.013 – volume: 44 start-page: L7 year: 2005 ident: 2023061715450338500_c5 publication-title: Jpn. J. Appl. Phys., Part 2 doi: 10.1143/JJAP.44.L7 – volume: 57 start-page: 040314 year: 2018 ident: 2023061715450338500_c26 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.57.040314 – volume: 57 start-page: 02CB18 year: 2018 ident: 2023061715450338500_c29 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.57.02CB18 – volume: 112 start-page: 233503 year: 2018 ident: 2023061715450338500_c30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5037095 – volume: 4 start-page: 2306 year: 2007 ident: 2023061715450338500_c6 publication-title: Phys. Status Solidi doi: 10.1002/pssc.200674877 – volume: 51 start-page: 020201 year: 2012 ident: 2023061715450338500_c15 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.7567/JJAP.51.020201 – volume: 47 start-page: 7311 year: 2008 ident: 2023061715450338500_c14 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.47.7311 – volume: 401 start-page: 588 year: 2014 ident: 2023061715450338500_c23 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2014.02.032 – volume: 113 start-page: 233901 year: 2013 ident: 2023061715450338500_c33 publication-title: J. Appl. Phys. doi: 10.1063/1.4807651 – volume: 1 start-page: 011202 year: 2008 ident: 2023061715450338500_c7 publication-title: Appl. Phys. Express doi: 10.1143/APEX.1.011202 |
SSID | ssj0005233 |
Score | 2.5515606 |
Snippet | Corundum-structured iridium oxide (α-Ir2O3), showing p-type conductivity, is a strong candidate to form high-quality pn heterojunctions with α-Ga2O3. We... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alignment Applied physics Conduction bands Corundum Current voltage characteristics Diodes Electric potential Electrical conduction Electrical properties Electrical resistivity Electrons Exports Gallium oxides Heterojunctions Heterostructures Iridium Offsets Photoelectric emission X ray spectra |
Title | Electrical properties of α-Ir2O3/α-Ga2O3 pn heterojunction diode and band alignment of the heterostructure |
URI | http://dx.doi.org/10.1063/1.5054054 https://www.proquest.com/docview/2136286196 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWrRBwQFBAbCnIAiohrdI2ceIkx1IWWkQBiUXqLYodm6ZdxdHulgMXfhN_hN_E-JFH2xUqXKI8Jg95vni-GXvGCL3kpEjBb5BeTFNwUMIi8lIuEk_mSShIRFNmyjEcfaQHX8P3x9HxYPCzN2vpfMm2-Y-VeSX_o1U4B3rVWbL_oNn2oXAC9kG_sAUNw_ZaOp6YNWxMM9c6qD7X1VE1_dvan2y99r3DefBJV0xwh-9yOBzXFbBDaE11CibNaL8oVWFHEZgp3Torv7VzBDQvteK20qwrQNIWrnUk1gZIFuOZyQ7qBohcePWkrLySn5RdnOBMAEaUvXjeExdnyqULLfO56snr1DOzAPH4cJGrfrDCT3TWnusSmw6YeDR1NWaF7XN3Yx0qdd1w0ynbDFWHPptEfaW3B3qlAw_bkeGdYWfSmmH8S5aunX9oRt4pyfzM3XoDrQXgZwRDtLb35ujDl94sIUKaRRf1dzfFqSjZad97kdJ0fsotIDF2PkWPskzvobvO18B7Fjj30UBU6-hOrwLlOrr52SruAZp1YMIdmLCS-PcvC6Qd2DEQwnWFL0IIGwhhQA_WEMIthPT9ACF8CUIP0fTtZLp_4LmlODxOgnjpyVSGTOphcE7DQvgRY-BpUEEJ5SxmQPuKUOSxSJJUxkWQcnCUg4BpEwYGRZJHaFipSjxGOIyjgPu5yCOgvnmUM-4XMacslckuoxEboVdNY2ZN8-nVUmbZFaWN0PNWtLa1WVYJbTYaydyvu8gCn-iUbLA-I_Si1dLfHrJC6ruadxJZXciN63zPE3S7-zE20RAaXjwFXrtkzxz2_gCZ3qGe |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+properties+of+%CE%B1-Ir2O3%2F%CE%B1-Ga2O3+pn+heterojunction+diode+and+band+alignment+of+the+heterostructure&rft.jtitle=Applied+physics+letters&rft.au=Kan%2C+Shin-ichi&rft.au=Takemoto%2C+Shu&rft.au=Kaneko%2C+Kentaro&rft.au=Takahashi%2C+Isao&rft.date=2018-11-19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=113&rft.issue=21&rft_id=info:doi/10.1063%2F1.5054054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_5054054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |