Flux-pinning-induced stress and magnetostriction in a superconducting strip under combination of transport current and magnetic field

The magnetoelastic properties and behaviors arising from the flux-pinning effect are investigated for a long rectangular superconducting strip subject to a combination of applied transport current and magnetic field. Based on the Bean critical state model and linear elastic theory, the flux-pinning-...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 122; no. 11
Main Authors Yang, Yumei, Wang, Xingzhe
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The magnetoelastic properties and behaviors arising from the flux-pinning effect are investigated for a long rectangular superconducting strip subject to a combination of applied transport current and magnetic field. Based on the Bean critical state model and linear elastic theory, the flux-pinning-induced stress in the superconducting strip is analytically obtained under the zero-field cooling condition. In particular, the magnetostriction performance for the strip with a one-sided restraint condition is then investigated. The results show that the trapped magnetic flux is distributed asymmetrically along the y-direction. A non-zero resultant force is consequently observed from the magnetization arising from the applied transport current and magnetic field. An obvious tension stress emerges around the constrained side of the strip along which the highest probability for cracking occurs and leads to a structural instability. The analytical results give insight into the flux-pinning-induced stress and magnetostriction response of the superconducting strip under both complex carrying-current and applied magnetic field conditions. These results may also provide helpful guidance in avoiding the breakdown of high-temperature superconductors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5003245