Interfacial traps and band offset enabled charge separation facilitating current/capacitance hysteresis in dual-oxide layered structure
Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have fabricated the WOx/ZrOx dual-oxide layered device, which shows the coexistence of gradual resistive and capacitive switching arisen from the c...
Saved in:
Published in | Applied physics letters Vol. 121; no. 18 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
31.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have fabricated the WOx/ZrOx dual-oxide layered device, which shows the coexistence of gradual resistive and capacitive switching arisen from the current and capacitance hysteresis curves, respectively. The expansion of hysteresis loop can be modulated by altering the oxygen content in the oxide materials. Interestingly, the presence of negative differential resistance (NDR) is dependent on the voltage sweep direction and range of applied bias, which can be reasoned by the local electric field, charge trapping/detrapping, and conduction band offset at the dual-oxide interface. This study provides the concept of the coexistence of current and capacitance hysteresis along with NDR, and it is highly potential for memristor and memcapacitor circuits to explore neuromorphic computing. |
---|---|
AbstractList | Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have fabricated the WOx/ZrOx dual-oxide layered device, which shows the coexistence of gradual resistive and capacitive switching arisen from the current and capacitance hysteresis curves, respectively. The expansion of hysteresis loop can be modulated by altering the oxygen content in the oxide materials. Interestingly, the presence of negative differential resistance (NDR) is dependent on the voltage sweep direction and range of applied bias, which can be reasoned by the local electric field, charge trapping/detrapping, and conduction band offset at the dual-oxide interface. This study provides the concept of the coexistence of current and capacitance hysteresis along with NDR, and it is highly potential for memristor and memcapacitor circuits to explore neuromorphic computing. |
Author | Chen, Kuan-Ting Chaurasiya, Rajneesh Lai, Bo-Ru Chen, Jen-Sue Lyu, Cheng-Han |
Author_xml | – sequence: 1 givenname: Cheng-Han surname: Lyu fullname: Lyu, Cheng-Han organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan – sequence: 2 givenname: Rajneesh surname: Chaurasiya fullname: Chaurasiya, Rajneesh organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan – sequence: 3 givenname: Bo-Ru surname: Lai fullname: Lai, Bo-Ru organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan – sequence: 4 givenname: Kuan-Ting surname: Chen fullname: Chen, Kuan-Ting organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan – sequence: 5 givenname: Jen-Sue surname: Chen fullname: Chen, Jen-Sue organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan |
BookMark | eNp9kN1KAzEQhYMoWKsXvkHAK4Vt89Nt1ksRfwqCN3q9TCbZdsuarElW7BP42m5tVVDxZoYZvnOGOQdk13lnCTnmbMTZVI7zEeNCSK52yIAzpTLJebFLBowxmU3Pc75PDmJc9mMupByQt5lLNlSANTQ0BWgjBWeoXhdfVdEmah3oxhqKCwhzS6NtIUCqvaNrWVOnfnBzil0I1qUxQtuvEzi0dLGKvbuNdaS1o6aDJvOvtbG0gVW_NzSm0GHqgj0kexU00R5t-5A8Xl89XN5md_c3s8uLuwylUCnTE8OE0lxVRktUiAXLOdNGCswRhGETreQEdME5ADIopjjlmAMzVupzZHJITja-bfDPnY2pXPouuP5kKZTkhWJSrKnxhsLgYwy2KvHjTe_6iOqm5Kxcp13m5TbtXnH6Q9GG-gnC6k_2bMPGT9cv-MWHb7BsTfUf_Nv5HZ7zoFs |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1002_adfm_202307961 crossref_primary_10_1002_aelm_202201006 crossref_primary_10_1063_5_0215543 |
Cites_doi | 10.1021/am400168m 10.1039/C9TC02693B 10.1021/am301769f 10.1021/acs.chemmater.9b05047 10.1002/aelm.202001178 10.1039/D0CP00530D 10.1016/j.snb.2019.126845 10.1116/6.0000016 10.1002/pssr.201900204 10.1021/acsaelm.2c00500 10.1007/s00339-020-3289-y 10.1039/C8FD00127H 10.1063/5.0042737 10.1016/j.jallcom.2019.152601 10.1088/1361-6463/ab217a 10.1021/acsaem.7b00254 10.1039/D0NA00195C 10.3390/mi12080913 10.1116/6.0000359 10.1039/C7CP01461A 10.1155/2014/578168 10.1049/joe.2018.5234 10.1039/C6NR02029A 10.1002/adfm.202002948 10.1002/aelm.201800185 10.1063/1.5124915 10.1016/j.jallcom.2019.153603 10.1016/j.apsusc.2020.147284 10.1002/aelm.202001237 10.1016/j.matlet.2021.130011 10.1002/pssr.201900073 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0122317 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0122317 apl |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2221-E-006-110-MY3 funderid: 10.13039/501100004663 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 110-2224-E-006-007 funderid: 10.13039/501100004663 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2221-E-006-114-MY3 funderid: 10.13039/501100004663 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-b4d027b17fdb3c7cc80510bd32c5ca2d04b734ab811aac0a86c61c5a0de3b9c03 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 06:17:32 EDT 2025 Tue Jul 01 01:08:23 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Fri Jun 21 00:30:03 EDT 2024 Tue Jul 04 19:18:54 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-b4d027b17fdb3c7cc80510bd32c5ca2d04b734ab811aac0a86c61c5a0de3b9c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5834-870X 0000-0002-5973-8670 0000-0002-7250-5409 0000-0002-3301-2089 |
PQID | 2731870320 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1063_5_0122317 crossref_citationtrail_10_1063_5_0122317 scitation_primary_10_1063_5_0122317 proquest_journals_2731870320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221031 2022-10-31 |
PublicationDateYYYYMMDD | 2022-10-31 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221031 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Zhang, Gao, Tang, Li, Wu, Qian, Wu (c10) 2019 Algadi, Mahata, Alsuwian, Ismail, Kwon, Kim (c11) 2021 Nawar, Abd-Elsalam, El-Mahalawy, El-Nahass (c31) 2020 Baer, Shard (c22) 2020 Engelhard, Baer, Herrera-Gomez, Sherwood (c23) 2020 Guo, Zhao, Xu, Huan, Ge, Chen, Huang, Cui, Zhuang, Du (c1) 2019 Wang, Strohbeen, Lee, Zhou, Kawasaki, Choi, Liu, Galli (c25) 2020 Al-Hashem, Akbar, Morris (c24) 2019 Ran, Hou, Song, Song, Zhong, Wang (c16) 2020 Chiu (c28) Zhao, Gao, Tang, Qian, Wu (c6) 2020 Moon, Lim, Park, Sung, Oh, Woo, Lee, Hwang (c5) 2019 Zhang, Peng, Zhao, Han, Hu, Liu, Han, Yang, Cheng, Ding (c7) 2021 Qi, Shen, Zhao, Zhao (c8) 2020 Wei, Yuan, Wang, Tu, Gao, You, Du (c17) 2017 Herzig, Weiher, Ascoli, Tetzlaff, Mikolajick, Slesazeck (c13) 2019 Qiu, Jin, Yang, Zhang, Gu, Zhang, Bian, Lu (c12) 2022 Rehman, Kim, Patil, Kadam, Sagar, Aziz, Um, Khan, Kim (c21) 2021 Wu, Wang, Ma, Cao, Deng (c19) 2018 Böckle, Sistani, Eysin, Bartmann, Luong, den Hertog, Lugstein, Weber (c14) 2021 Alialy, Esteki, Ferreira, Boland, da Rocha (c20) 2020 Cui, Peng, Wu, Wang, Wu (c26) 2013 Mishra, Yogi, Sagdeo, Kumar (c18) 2018 Çaldıran (c29) 2020 Wang, Yan (c4) 2019 Younis, Chu, Lin, Yi, Dang, Li (c27) 2013 Younis, Hu, Sharma, Lin, Mi, Guan, Zhang, Wang, He, Liu (c3) 2020 Luo, Xu, Liu, Lv, Gong, Long, Liu, Sun, Banerjee, Li (c9) 2016 Roy, Mandal, Menon (c30) 2021 Ismail, Kim (c15) 2020 Lekshmi Jagath, Hock Leong, Kumar, Almurib (c2) (2023081003434393000_c24) 2019; 301 (2023081003434393000_c2); 2019 (2023081003434393000_c19) 2018; 4 (2023081003434393000_c25) 2020; 32 (2023081003434393000_c5) 2019; 213 (2023081003434393000_c14) 2021; 7 (2023081003434393000_c3) 2020; 30 (2023081003434393000_c26) 2013; 5 (2023081003434393000_c17) 2017; 19 (2023081003434393000_c21) 2021; 7 (2023081003434393000_c8) 2020; 822 (2023081003434393000_c15) 2020; 530 (2023081003434393000_c30) 2021; 129 (2023081003434393000_c7) 2021; 12 (2023081003434393000_c1) 2019; 7 (2023081003434393000_c6) 2020; 7 (2023081003434393000_c22) 2020; 38 (2023081003434393000_c28); 2014 (2023081003434393000_c13) 2019; 52 (2023081003434393000_c11) 2021; 298 (2023081003434393000_c12) 2022; 4 (2023081003434393000_c18) 2018; 1 (2023081003434393000_c31) 2020; 126 (2023081003434393000_c20) 2020; 2 (2023081003434393000_c10) 2019; 13 (2023081003434393000_c4) 2019; 13 (2023081003434393000_c23) 2020; 38 (2023081003434393000_c9) 2016; 8 (2023081003434393000_c27) 2013; 5 (2023081003434393000_c29) 2020; 816 (2023081003434393000_c16) 2020; 22 |
References_xml | – start-page: 4644 ident: c2 publication-title: J. Eng. – start-page: 2249 year: 2013 ident: c27 publication-title: ACS Appl. Mater. Interfaces – start-page: 3535 year: 2022 ident: c12 publication-title: ACS Appl. Electron. Mater. – start-page: 031203 year: 2020 ident: c22 publication-title: J. Vac. Sci. Technol. A – start-page: 2002948 year: 2020 ident: c3 publication-title: Adv. Funct. Mater. – start-page: 1213 year: 2013 ident: c26 publication-title: ACS Appl. Mater. Interfaces – start-page: 2001178 year: 2021 ident: c14 publication-title: Adv. Electron. Mater. – start-page: 8915 year: 2019 ident: c1 publication-title: J. Mater. Chem. C – start-page: 152601 year: 2020 ident: c29 publication-title: J. Alloys Compd. – start-page: 126845 year: 2019 ident: c24 publication-title: Sens. Actuators, B – start-page: 1900073 year: 2019 ident: c4 publication-title: Phys. Status Solidi RRL – start-page: 063203 year: 2020 ident: c23 publication-title: J. Vac. Sci. Technol. A – start-page: 1800185 year: 2018 ident: c19 publication-title: Adv. Electron. Mater. – start-page: 421 year: 2019 ident: c5 publication-title: Faraday Discuss. – start-page: 2899 year: 2020 ident: c25 publication-title: Chem. Mater. – start-page: 130011 year: 2021 ident: c11 publication-title: Mater. Lett. – start-page: 195501 year: 2021 ident: c30 publication-title: J. Appl. Phys. – start-page: 113 year: 2020 ident: c31 publication-title: Appl. Phys. A – start-page: 790 year: 2018 ident: c18 publication-title: ACS Appl. Energy Mater. – start-page: 578168 ident: c28 publication-title: Adv. Mater. Sci. Eng. – start-page: 011301 year: 2020 ident: c6 publication-title: Appl. Phys. Rev. – start-page: 2514 year: 2020 ident: c20 publication-title: Nanoscale Adv. – start-page: 325104 year: 2019 ident: c13 publication-title: J. Phys. D – start-page: 913 year: 2021 ident: c7 publication-title: Micromachines – start-page: 1900204 year: 2019 ident: c10 publication-title: Phys. Status Solidi RRL – start-page: 5819 year: 2020 ident: c16 publication-title: Phys. Chem. Chem. Phys. – start-page: 11864 year: 2017 ident: c17 publication-title: Phys. Chem. Chem. Phys. – start-page: 15629 year: 2016 ident: c9 publication-title: Nanoscale – start-page: 2001237 year: 2021 ident: c21 publication-title: Adv. Electron. Mater. – start-page: 147284 year: 2020 ident: c15 publication-title: Appl. Surf. Sci. – start-page: 153603 year: 2020 ident: c8 publication-title: J. Alloys Compd. – volume: 5 start-page: 2249 year: 2013 ident: 2023081003434393000_c27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am400168m – volume: 7 start-page: 8915 year: 2019 ident: 2023081003434393000_c1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC02693B – volume: 5 start-page: 1213 year: 2013 ident: 2023081003434393000_c26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301769f – volume: 32 start-page: 2899 year: 2020 ident: 2023081003434393000_c25 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b05047 – volume: 7 start-page: 2001178 year: 2021 ident: 2023081003434393000_c14 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202001178 – volume: 22 start-page: 5819 year: 2020 ident: 2023081003434393000_c16 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP00530D – volume: 301 start-page: 126845 year: 2019 ident: 2023081003434393000_c24 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2019.126845 – volume: 38 start-page: 031203 year: 2020 ident: 2023081003434393000_c22 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/6.0000016 – volume: 13 start-page: 1900204 year: 2019 ident: 2023081003434393000_c10 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201900204 – volume: 4 start-page: 3535 year: 2022 ident: 2023081003434393000_c12 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c00500 – volume: 126 start-page: 113 year: 2020 ident: 2023081003434393000_c31 publication-title: Appl. Phys. A doi: 10.1007/s00339-020-3289-y – volume: 213 start-page: 421 year: 2019 ident: 2023081003434393000_c5 publication-title: Faraday Discuss. doi: 10.1039/C8FD00127H – volume: 129 start-page: 195501 year: 2021 ident: 2023081003434393000_c30 publication-title: J. Appl. Phys. doi: 10.1063/5.0042737 – volume: 816 start-page: 152601 year: 2020 ident: 2023081003434393000_c29 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152601 – volume: 52 start-page: 325104 year: 2019 ident: 2023081003434393000_c13 publication-title: J. Phys. D doi: 10.1088/1361-6463/ab217a – volume: 1 start-page: 790 year: 2018 ident: 2023081003434393000_c18 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00254 – volume: 2 start-page: 2514 year: 2020 ident: 2023081003434393000_c20 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00195C – volume: 12 start-page: 913 year: 2021 ident: 2023081003434393000_c7 publication-title: Micromachines doi: 10.3390/mi12080913 – volume: 38 start-page: 063203 year: 2020 ident: 2023081003434393000_c23 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/6.0000359 – volume: 19 start-page: 11864 year: 2017 ident: 2023081003434393000_c17 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01461A – volume: 2014 start-page: 578168 ident: 2023081003434393000_c28 publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2014/578168 – volume: 2019 start-page: 4644 ident: 2023081003434393000_c2 publication-title: J. Eng. doi: 10.1049/joe.2018.5234 – volume: 8 start-page: 15629 year: 2016 ident: 2023081003434393000_c9 publication-title: Nanoscale doi: 10.1039/C6NR02029A – volume: 30 start-page: 2002948 year: 2020 ident: 2023081003434393000_c3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002948 – volume: 4 start-page: 1800185 year: 2018 ident: 2023081003434393000_c19 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800185 – volume: 7 start-page: 011301 year: 2020 ident: 2023081003434393000_c6 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5124915 – volume: 822 start-page: 153603 year: 2020 ident: 2023081003434393000_c8 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153603 – volume: 530 start-page: 147284 year: 2020 ident: 2023081003434393000_c15 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147284 – volume: 7 start-page: 2001237 year: 2021 ident: 2023081003434393000_c21 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202001237 – volume: 298 start-page: 130011 year: 2021 ident: 2023081003434393000_c11 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.130011 – volume: 13 start-page: 1900073 year: 2019 ident: 2023081003434393000_c4 publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201900073 |
SSID | ssj0005233 |
Score | 2.422326 |
Snippet | Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Capacitance Conduction bands Electric fields Hysteresis loops Memristors Neuromorphic computing Oxygen content Switching |
Title | Interfacial traps and band offset enabled charge separation facilitating current/capacitance hysteresis in dual-oxide layered structure |
URI | http://dx.doi.org/10.1063/5.0122317 https://www.proquest.com/docview/2731870320 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJ8R4QDBAdAxkAQ9IkVkSJ072OMamCnUDjVbqW2Q7Diuq0qpJEeUL8B34tJxj50-lagJerMpyXcv38_l8vfsdQm_iLKYCriGii02RQPmMCKGjzAWT0jsRGXd1NvLlFRtOgo_TcNrr_e5ELa1L8U7-3JlX8j9ShT6Qq86S_QfJNpNCB3wG-UILEob2r2RcufMyXnm9yxVfGr5loZtFlhWqdFSVGpU6FSGScgplqL51eCF8zRB066xbw9IEK5FweUro1uf9RrM8w3N8ZmJm13xOFj9mqXLmfKNLfDqGfNZykjRcttauNT6TwplXCUON6X52o_KvZGhTHjbrTnzBesWL2YY71_xbrlTROKrfL8j12iRxz9q_nnhOxrYgi56z676Al2-r99uMAZ5vx0Z8NivcUtyUsBPLTauMrnYj7WK16rtW5ibfukZtvPOWALMMNlTztYJxZFJHt5m4rz4lF5PRKBmfT8d30J4PTxC_j_ZOP1yOvnQCiCit6zHqpdW8VYweN1NvWzvtE-ZeIS0Fe8eaGT9ED-wzBJ8aTD1CPZUfoPsdcsoDdNduz2P0q4MzXOEMA8Swxhk2OMMWZ9jgDLc4w12cYYuz4w7KcIsyPMtxizJsUYYblD1Bk4vz8dmQ2AIeRFI_KokIUtePhBdlqaAykjLWV4BIqS9Dyf3UDUREAy5iz-Ncujxmknky5G6qQIFIlz5F_XyRq2cI-74AeatIpDoaIVM8CpUXpBFnjDOXigF6W290Um-tLrIyT6ooC0aTMLEyGaBXzdCloXTZNeiollZiT3yRgKnvwf1GfXeAXjcSvG2SHaO-L1btiGSZZoe3_9RztN-emyPUhz1XL8AQLsVLi8g_bPW86w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+traps+and+band+offset+enabled+charge+separation+facilitating+current%2Fcapacitance+hysteresis+in+dual-oxide+layered+structure&rft.jtitle=Applied+physics+letters&rft.au=Cheng-Han%2C+Lyu&rft.au=Chaurasiya+Rajneesh&rft.au=Bo-Ru%2C+Lai&rft.au=Kuan-Ting%2C+Chen&rft.date=2022-10-31&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=121&rft.issue=18&rft_id=info:doi/10.1063%2F5.0122317&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |