Interfacial traps and band offset enabled charge separation facilitating current/capacitance hysteresis in dual-oxide layered structure

Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have fabricated the WOx/ZrOx dual-oxide layered device, which shows the coexistence of gradual resistive and capacitive switching arisen from the c...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 121; no. 18
Main Authors Lyu, Cheng-Han, Chaurasiya, Rajneesh, Lai, Bo-Ru, Chen, Kuan-Ting, Chen, Jen-Sue
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 31.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have fabricated the WOx/ZrOx dual-oxide layered device, which shows the coexistence of gradual resistive and capacitive switching arisen from the current and capacitance hysteresis curves, respectively. The expansion of hysteresis loop can be modulated by altering the oxygen content in the oxide materials. Interestingly, the presence of negative differential resistance (NDR) is dependent on the voltage sweep direction and range of applied bias, which can be reasoned by the local electric field, charge trapping/detrapping, and conduction band offset at the dual-oxide interface. This study provides the concept of the coexistence of current and capacitance hysteresis along with NDR, and it is highly potential for memristor and memcapacitor circuits to explore neuromorphic computing.
AbstractList Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have fabricated the WOx/ZrOx dual-oxide layered device, which shows the coexistence of gradual resistive and capacitive switching arisen from the current and capacitance hysteresis curves, respectively. The expansion of hysteresis loop can be modulated by altering the oxygen content in the oxide materials. Interestingly, the presence of negative differential resistance (NDR) is dependent on the voltage sweep direction and range of applied bias, which can be reasoned by the local electric field, charge trapping/detrapping, and conduction band offset at the dual-oxide interface. This study provides the concept of the coexistence of current and capacitance hysteresis along with NDR, and it is highly potential for memristor and memcapacitor circuits to explore neuromorphic computing.
Author Chen, Kuan-Ting
Chaurasiya, Rajneesh
Lai, Bo-Ru
Chen, Jen-Sue
Lyu, Cheng-Han
Author_xml – sequence: 1
  givenname: Cheng-Han
  surname: Lyu
  fullname: Lyu, Cheng-Han
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
– sequence: 2
  givenname: Rajneesh
  surname: Chaurasiya
  fullname: Chaurasiya, Rajneesh
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
– sequence: 3
  givenname: Bo-Ru
  surname: Lai
  fullname: Lai, Bo-Ru
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
– sequence: 4
  givenname: Kuan-Ting
  surname: Chen
  fullname: Chen, Kuan-Ting
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
– sequence: 5
  givenname: Jen-Sue
  surname: Chen
  fullname: Chen, Jen-Sue
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
BookMark eNp9kN1KAzEQhYMoWKsXvkHAK4Vt89Nt1ksRfwqCN3q9TCbZdsuarElW7BP42m5tVVDxZoYZvnOGOQdk13lnCTnmbMTZVI7zEeNCSK52yIAzpTLJebFLBowxmU3Pc75PDmJc9mMupByQt5lLNlSANTQ0BWgjBWeoXhdfVdEmah3oxhqKCwhzS6NtIUCqvaNrWVOnfnBzil0I1qUxQtuvEzi0dLGKvbuNdaS1o6aDJvOvtbG0gVW_NzSm0GHqgj0kexU00R5t-5A8Xl89XN5md_c3s8uLuwylUCnTE8OE0lxVRktUiAXLOdNGCswRhGETreQEdME5ADIopjjlmAMzVupzZHJITja-bfDPnY2pXPouuP5kKZTkhWJSrKnxhsLgYwy2KvHjTe_6iOqm5Kxcp13m5TbtXnH6Q9GG-gnC6k_2bMPGT9cv-MWHb7BsTfUf_Nv5HZ7zoFs
CODEN APPLAB
CitedBy_id crossref_primary_10_1002_adfm_202307961
crossref_primary_10_1002_aelm_202201006
crossref_primary_10_1063_5_0215543
Cites_doi 10.1021/am400168m
10.1039/C9TC02693B
10.1021/am301769f
10.1021/acs.chemmater.9b05047
10.1002/aelm.202001178
10.1039/D0CP00530D
10.1016/j.snb.2019.126845
10.1116/6.0000016
10.1002/pssr.201900204
10.1021/acsaelm.2c00500
10.1007/s00339-020-3289-y
10.1039/C8FD00127H
10.1063/5.0042737
10.1016/j.jallcom.2019.152601
10.1088/1361-6463/ab217a
10.1021/acsaem.7b00254
10.1039/D0NA00195C
10.3390/mi12080913
10.1116/6.0000359
10.1039/C7CP01461A
10.1155/2014/578168
10.1049/joe.2018.5234
10.1039/C6NR02029A
10.1002/adfm.202002948
10.1002/aelm.201800185
10.1063/1.5124915
10.1016/j.jallcom.2019.153603
10.1016/j.apsusc.2020.147284
10.1002/aelm.202001237
10.1016/j.matlet.2021.130011
10.1002/pssr.201900073
ContentType Journal Article
Copyright Author(s)
2022 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2022 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0122317
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0122317
apl
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2221-E-006-110-MY3
  funderid: 10.13039/501100004663
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 110-2224-E-006-007
  funderid: 10.13039/501100004663
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2221-E-006-114-MY3
  funderid: 10.13039/501100004663
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-b4d027b17fdb3c7cc80510bd32c5ca2d04b734ab811aac0a86c61c5a0de3b9c03
ISSN 0003-6951
IngestDate Mon Jun 30 06:17:32 EDT 2025
Tue Jul 01 01:08:23 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Fri Jun 21 00:30:03 EDT 2024
Tue Jul 04 19:18:54 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-b4d027b17fdb3c7cc80510bd32c5ca2d04b734ab811aac0a86c61c5a0de3b9c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5834-870X
0000-0002-5973-8670
0000-0002-7250-5409
0000-0002-3301-2089
PQID 2731870320
PQPubID 2050678
PageCount 6
ParticipantIDs crossref_primary_10_1063_5_0122317
crossref_citationtrail_10_1063_5_0122317
scitation_primary_10_1063_5_0122317
proquest_journals_2731870320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221031
2022-10-31
PublicationDateYYYYMMDD 2022-10-31
PublicationDate_xml – month: 10
  year: 2022
  text: 20221031
  day: 31
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2022
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Zhang, Gao, Tang, Li, Wu, Qian, Wu (c10) 2019
Algadi, Mahata, Alsuwian, Ismail, Kwon, Kim (c11) 2021
Nawar, Abd-Elsalam, El-Mahalawy, El-Nahass (c31) 2020
Baer, Shard (c22) 2020
Engelhard, Baer, Herrera-Gomez, Sherwood (c23) 2020
Guo, Zhao, Xu, Huan, Ge, Chen, Huang, Cui, Zhuang, Du (c1) 2019
Wang, Strohbeen, Lee, Zhou, Kawasaki, Choi, Liu, Galli (c25) 2020
Al-Hashem, Akbar, Morris (c24) 2019
Ran, Hou, Song, Song, Zhong, Wang (c16) 2020
Chiu (c28)
Zhao, Gao, Tang, Qian, Wu (c6) 2020
Moon, Lim, Park, Sung, Oh, Woo, Lee, Hwang (c5) 2019
Zhang, Peng, Zhao, Han, Hu, Liu, Han, Yang, Cheng, Ding (c7) 2021
Qi, Shen, Zhao, Zhao (c8) 2020
Wei, Yuan, Wang, Tu, Gao, You, Du (c17) 2017
Herzig, Weiher, Ascoli, Tetzlaff, Mikolajick, Slesazeck (c13) 2019
Qiu, Jin, Yang, Zhang, Gu, Zhang, Bian, Lu (c12) 2022
Rehman, Kim, Patil, Kadam, Sagar, Aziz, Um, Khan, Kim (c21) 2021
Wu, Wang, Ma, Cao, Deng (c19) 2018
Böckle, Sistani, Eysin, Bartmann, Luong, den Hertog, Lugstein, Weber (c14) 2021
Alialy, Esteki, Ferreira, Boland, da Rocha (c20) 2020
Cui, Peng, Wu, Wang, Wu (c26) 2013
Mishra, Yogi, Sagdeo, Kumar (c18) 2018
Çaldıran (c29) 2020
Wang, Yan (c4) 2019
Younis, Chu, Lin, Yi, Dang, Li (c27) 2013
Younis, Hu, Sharma, Lin, Mi, Guan, Zhang, Wang, He, Liu (c3) 2020
Luo, Xu, Liu, Lv, Gong, Long, Liu, Sun, Banerjee, Li (c9) 2016
Roy, Mandal, Menon (c30) 2021
Ismail, Kim (c15) 2020
Lekshmi Jagath, Hock Leong, Kumar, Almurib (c2)
(2023081003434393000_c24) 2019; 301
(2023081003434393000_c2); 2019
(2023081003434393000_c19) 2018; 4
(2023081003434393000_c25) 2020; 32
(2023081003434393000_c5) 2019; 213
(2023081003434393000_c14) 2021; 7
(2023081003434393000_c3) 2020; 30
(2023081003434393000_c26) 2013; 5
(2023081003434393000_c17) 2017; 19
(2023081003434393000_c21) 2021; 7
(2023081003434393000_c8) 2020; 822
(2023081003434393000_c15) 2020; 530
(2023081003434393000_c30) 2021; 129
(2023081003434393000_c7) 2021; 12
(2023081003434393000_c1) 2019; 7
(2023081003434393000_c6) 2020; 7
(2023081003434393000_c22) 2020; 38
(2023081003434393000_c28); 2014
(2023081003434393000_c13) 2019; 52
(2023081003434393000_c11) 2021; 298
(2023081003434393000_c12) 2022; 4
(2023081003434393000_c18) 2018; 1
(2023081003434393000_c31) 2020; 126
(2023081003434393000_c20) 2020; 2
(2023081003434393000_c10) 2019; 13
(2023081003434393000_c4) 2019; 13
(2023081003434393000_c23) 2020; 38
(2023081003434393000_c9) 2016; 8
(2023081003434393000_c27) 2013; 5
(2023081003434393000_c29) 2020; 816
(2023081003434393000_c16) 2020; 22
References_xml – start-page: 4644
  ident: c2
  publication-title: J. Eng.
– start-page: 2249
  year: 2013
  ident: c27
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 3535
  year: 2022
  ident: c12
  publication-title: ACS Appl. Electron. Mater.
– start-page: 031203
  year: 2020
  ident: c22
  publication-title: J. Vac. Sci. Technol. A
– start-page: 2002948
  year: 2020
  ident: c3
  publication-title: Adv. Funct. Mater.
– start-page: 1213
  year: 2013
  ident: c26
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 2001178
  year: 2021
  ident: c14
  publication-title: Adv. Electron. Mater.
– start-page: 8915
  year: 2019
  ident: c1
  publication-title: J. Mater. Chem. C
– start-page: 152601
  year: 2020
  ident: c29
  publication-title: J. Alloys Compd.
– start-page: 126845
  year: 2019
  ident: c24
  publication-title: Sens. Actuators, B
– start-page: 1900073
  year: 2019
  ident: c4
  publication-title: Phys. Status Solidi RRL
– start-page: 063203
  year: 2020
  ident: c23
  publication-title: J. Vac. Sci. Technol. A
– start-page: 1800185
  year: 2018
  ident: c19
  publication-title: Adv. Electron. Mater.
– start-page: 421
  year: 2019
  ident: c5
  publication-title: Faraday Discuss.
– start-page: 2899
  year: 2020
  ident: c25
  publication-title: Chem. Mater.
– start-page: 130011
  year: 2021
  ident: c11
  publication-title: Mater. Lett.
– start-page: 195501
  year: 2021
  ident: c30
  publication-title: J. Appl. Phys.
– start-page: 113
  year: 2020
  ident: c31
  publication-title: Appl. Phys. A
– start-page: 790
  year: 2018
  ident: c18
  publication-title: ACS Appl. Energy Mater.
– start-page: 578168
  ident: c28
  publication-title: Adv. Mater. Sci. Eng.
– start-page: 011301
  year: 2020
  ident: c6
  publication-title: Appl. Phys. Rev.
– start-page: 2514
  year: 2020
  ident: c20
  publication-title: Nanoscale Adv.
– start-page: 325104
  year: 2019
  ident: c13
  publication-title: J. Phys. D
– start-page: 913
  year: 2021
  ident: c7
  publication-title: Micromachines
– start-page: 1900204
  year: 2019
  ident: c10
  publication-title: Phys. Status Solidi RRL
– start-page: 5819
  year: 2020
  ident: c16
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 11864
  year: 2017
  ident: c17
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 15629
  year: 2016
  ident: c9
  publication-title: Nanoscale
– start-page: 2001237
  year: 2021
  ident: c21
  publication-title: Adv. Electron. Mater.
– start-page: 147284
  year: 2020
  ident: c15
  publication-title: Appl. Surf. Sci.
– start-page: 153603
  year: 2020
  ident: c8
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 2249
  year: 2013
  ident: 2023081003434393000_c27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am400168m
– volume: 7
  start-page: 8915
  year: 2019
  ident: 2023081003434393000_c1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC02693B
– volume: 5
  start-page: 1213
  year: 2013
  ident: 2023081003434393000_c26
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301769f
– volume: 32
  start-page: 2899
  year: 2020
  ident: 2023081003434393000_c25
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b05047
– volume: 7
  start-page: 2001178
  year: 2021
  ident: 2023081003434393000_c14
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202001178
– volume: 22
  start-page: 5819
  year: 2020
  ident: 2023081003434393000_c16
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP00530D
– volume: 301
  start-page: 126845
  year: 2019
  ident: 2023081003434393000_c24
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.126845
– volume: 38
  start-page: 031203
  year: 2020
  ident: 2023081003434393000_c22
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/6.0000016
– volume: 13
  start-page: 1900204
  year: 2019
  ident: 2023081003434393000_c10
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201900204
– volume: 4
  start-page: 3535
  year: 2022
  ident: 2023081003434393000_c12
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c00500
– volume: 126
  start-page: 113
  year: 2020
  ident: 2023081003434393000_c31
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-3289-y
– volume: 213
  start-page: 421
  year: 2019
  ident: 2023081003434393000_c5
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00127H
– volume: 129
  start-page: 195501
  year: 2021
  ident: 2023081003434393000_c30
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0042737
– volume: 816
  start-page: 152601
  year: 2020
  ident: 2023081003434393000_c29
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152601
– volume: 52
  start-page: 325104
  year: 2019
  ident: 2023081003434393000_c13
  publication-title: J. Phys. D
  doi: 10.1088/1361-6463/ab217a
– volume: 1
  start-page: 790
  year: 2018
  ident: 2023081003434393000_c18
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00254
– volume: 2
  start-page: 2514
  year: 2020
  ident: 2023081003434393000_c20
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00195C
– volume: 12
  start-page: 913
  year: 2021
  ident: 2023081003434393000_c7
  publication-title: Micromachines
  doi: 10.3390/mi12080913
– volume: 38
  start-page: 063203
  year: 2020
  ident: 2023081003434393000_c23
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/6.0000359
– volume: 19
  start-page: 11864
  year: 2017
  ident: 2023081003434393000_c17
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01461A
– volume: 2014
  start-page: 578168
  ident: 2023081003434393000_c28
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2014/578168
– volume: 2019
  start-page: 4644
  ident: 2023081003434393000_c2
  publication-title: J. Eng.
  doi: 10.1049/joe.2018.5234
– volume: 8
  start-page: 15629
  year: 2016
  ident: 2023081003434393000_c9
  publication-title: Nanoscale
  doi: 10.1039/C6NR02029A
– volume: 30
  start-page: 2002948
  year: 2020
  ident: 2023081003434393000_c3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002948
– volume: 4
  start-page: 1800185
  year: 2018
  ident: 2023081003434393000_c19
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800185
– volume: 7
  start-page: 011301
  year: 2020
  ident: 2023081003434393000_c6
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5124915
– volume: 822
  start-page: 153603
  year: 2020
  ident: 2023081003434393000_c8
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153603
– volume: 530
  start-page: 147284
  year: 2020
  ident: 2023081003434393000_c15
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147284
– volume: 7
  start-page: 2001237
  year: 2021
  ident: 2023081003434393000_c21
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202001237
– volume: 298
  start-page: 130011
  year: 2021
  ident: 2023081003434393000_c11
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.130011
– volume: 13
  start-page: 1900073
  year: 2019
  ident: 2023081003434393000_c4
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201900073
SSID ssj0005233
Score 2.422326
Snippet Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Capacitance
Conduction bands
Electric fields
Hysteresis loops
Memristors
Neuromorphic computing
Oxygen content
Switching
Title Interfacial traps and band offset enabled charge separation facilitating current/capacitance hysteresis in dual-oxide layered structure
URI http://dx.doi.org/10.1063/5.0122317
https://www.proquest.com/docview/2731870320
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJ8R4QDBAdAxkAQ9IkVkSJ072OMamCnUDjVbqW2Q7Diuq0qpJEeUL8B34tJxj50-lagJerMpyXcv38_l8vfsdQm_iLKYCriGii02RQPmMCKGjzAWT0jsRGXd1NvLlFRtOgo_TcNrr_e5ELa1L8U7-3JlX8j9ShT6Qq86S_QfJNpNCB3wG-UILEob2r2RcufMyXnm9yxVfGr5loZtFlhWqdFSVGpU6FSGScgplqL51eCF8zRB066xbw9IEK5FweUro1uf9RrM8w3N8ZmJm13xOFj9mqXLmfKNLfDqGfNZykjRcttauNT6TwplXCUON6X52o_KvZGhTHjbrTnzBesWL2YY71_xbrlTROKrfL8j12iRxz9q_nnhOxrYgi56z676Al2-r99uMAZ5vx0Z8NivcUtyUsBPLTauMrnYj7WK16rtW5ibfukZtvPOWALMMNlTztYJxZFJHt5m4rz4lF5PRKBmfT8d30J4PTxC_j_ZOP1yOvnQCiCit6zHqpdW8VYweN1NvWzvtE-ZeIS0Fe8eaGT9ED-wzBJ8aTD1CPZUfoPsdcsoDdNduz2P0q4MzXOEMA8Swxhk2OMMWZ9jgDLc4w12cYYuz4w7KcIsyPMtxizJsUYYblD1Bk4vz8dmQ2AIeRFI_KokIUtePhBdlqaAykjLWV4BIqS9Dyf3UDUREAy5iz-Ncujxmknky5G6qQIFIlz5F_XyRq2cI-74AeatIpDoaIVM8CpUXpBFnjDOXigF6W290Um-tLrIyT6ooC0aTMLEyGaBXzdCloXTZNeiollZiT3yRgKnvwf1GfXeAXjcSvG2SHaO-L1btiGSZZoe3_9RztN-emyPUhz1XL8AQLsVLi8g_bPW86w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+traps+and+band+offset+enabled+charge+separation+facilitating+current%2Fcapacitance+hysteresis+in+dual-oxide+layered+structure&rft.jtitle=Applied+physics+letters&rft.au=Cheng-Han%2C+Lyu&rft.au=Chaurasiya+Rajneesh&rft.au=Bo-Ru%2C+Lai&rft.au=Kuan-Ting%2C+Chen&rft.date=2022-10-31&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=121&rft.issue=18&rft_id=info:doi/10.1063%2F5.0122317&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon