Lattice Boltzmann method simulations of Stokes number effects on particle motion in a channel flow
In a recent experimental study by Lau and Nathan [“Influence of Stokes number on the velocity and concentration distributions in particle-laden jets,” J. Fluid Mech. 757, 432 (2014)], it was found that particles in a turbulent pipe flow tend to migrate preferentially toward the wall or the axis depe...
Saved in:
Published in | Physics of fluids (1994) Vol. 28; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In a recent experimental study by Lau and Nathan [“Influence of Stokes number on the velocity and concentration distributions in particle-laden jets,” J. Fluid Mech. 757, 432 (2014)], it was found that particles in a turbulent pipe flow tend to migrate preferentially toward the wall or the axis depending on their Stokes number (St). Particles with a higher St (>10) are concentrated near the axis while those with lower St (<1) move toward the walls. Jebakumar et al. [“Lattice Boltzmann method simulations of Stokes number effects on particle trajectories in a wall-bounded flow,” Comput. Fluids 124, 208 (2016)] have carried out simulations of a particle in a laminar channel flow to investigate this behavior. In their work, they report a similar behavior where particles with low St migrate toward the wall and oscillate about a mean position near the wall while those with high St oscillate about the channel center plane. They have explained this behavior in terms of the Saffman lift, Magnus lift, and wall repulsion forces acting on the particle. The present work extends the previous work done by Jebakumar et al. and aims to study the behavior of particles at intermediate St ranging from 10 to 20. It is in this range where the equilibrium position of the particle changes from near the wall to the axis and the particle starts oscillating about the axis. The Lattice Boltzmann method is employed to carry out this study. It is shown that the change in mean equilibrium position is related to increasing oscillations of the particle with mean position near the wall which results in the particle moving past the center plane to the opposite side. The responsible mechanisms are explained in detail. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.4953800 |