Ultrafast Removal of LO-Mode Heat From a GaN-Based Two-Dimensional Channel

Dissipation of the Joule heat, accumulated in non-equilibrium longitudinal optical (LO) phonon modes, is considered in terms of LO-phonon lifetime. The dependence of the lifetime on electron density, hot-electron temperature, and supplied electric power are presented for a voltage-biased GaN-based c...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Vol. 98; no. 7; pp. 1118 - 1126
Main Authors Matulionis, Arvydas, Liberis, Juozapas, Matulioniene, Ilona, Ramonas, Mindaugas, Sermuksnis, Emilis
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dissipation of the Joule heat, accumulated in non-equilibrium longitudinal optical (LO) phonon modes, is considered in terms of LO-phonon lifetime. The dependence of the lifetime on electron density, hot-electron temperature, and supplied electric power are presented for a voltage-biased GaN-based channel with a two-dimensional electron gas (2DEG). An improved understanding of conversion of LO phonons into acoustic and other phonons is reached. A nonmonotonous dependence of the lifetime on the electron density is observed. The optimal 2DEG density for ultrafast decay of the LO-mode heat is estimated and explained in terms of LO-phonon-plasmon resonance. A new limitation of the frequency performance is predicted for heterostructure field effect transistors under the off-resonance conditions of operation. The shortest hot-phonon lifetime of ~60± 20 fs is found, at a high level of supplied power, in nearly lattice matched InAlN/AlN/GaN.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9219
1558-2256
DOI:10.1109/JPROC.2009.2029877