Terahertz generation from graphite

Generation of subpicosecond terahertz pulses is observed when graphite surfaces are illuminated with femtosecond near-infrared laser pulses. The nonlinear optical generation of THz pulses from graphite is unexpected since, in principle, the material possesses a centre of inversion symmetry. Experime...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 17; no. 18; p. 16092
Main Authors Ramakrishnan, Gopakumar, Chakkittakandy, Reshmi, Planken, Paul C. M.
Format Journal Article
LanguageEnglish
Published United States 31.08.2009
Online AccessGet full text

Cover

Loading…
More Information
Summary:Generation of subpicosecond terahertz pulses is observed when graphite surfaces are illuminated with femtosecond near-infrared laser pulses. The nonlinear optical generation of THz pulses from graphite is unexpected since, in principle, the material possesses a centre of inversion symmetry. Experiments with highly oriented pyrolytic graphite crystals suggest that the THz radiation is generated by a transient photocurrent in a direction normal to the graphene planes, along the c-axis of the crystal. This is supported by magnetic-field induced changes in the THz electric-field polarization, and consequently, the direction of the photocurrent. We show that other forms of graphite, such as a pencil drawing on paper, are also capable of emitting THz pulses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.17.016092