A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning

In recent years, incremental sampling-based motion planning algorithms have been widely used to solve robot motion planning problems in high-dimensional configuration spaces. In particular, the Rapidly-exploring Random Tree (RRT) algorithm and its asymptotically-optimal counterpart called RRT * are...

Full description

Saved in:
Bibliographic Details
Published inIntegrated computer-aided engineering Vol. 27; no. 2; pp. 121 - 138
Main Authors Pérez-Hurtado, Ignacio, Martínez-del-Amor, Miguel Á., Zhang, Gexiang, Neri, Ferrante, Pérez-Jiménez, Mario J.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2020
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1069-2509
1875-8835
DOI10.3233/ICA-190616

Cover

Loading…
More Information
Summary:In recent years, incremental sampling-based motion planning algorithms have been widely used to solve robot motion planning problems in high-dimensional configuration spaces. In particular, the Rapidly-exploring Random Tree (RRT) algorithm and its asymptotically-optimal counterpart called RRT * are popular algorithms used in real-life applications due to its desirable properties. Such algorithms are inherently iterative, but certain modules such as the collision-checking procedure can be parallelized providing significant speedup with respect to sequential implementations. In this paper, the RRT and RRT * algorithms have been adapted to a bioinspired computational framework called Membrane Computing whose models of computation, a.k.a. P systems, run in a non-deterministic and massively parallel way. A large number of robotic applications are currently using a variant of P systems called Enzymatic Numerical P systems (ENPS) for reactive controlling, but there is a lack of solutions for motion planning in the framework. The novel models in this work have been designed using the ENPS framework. In order to test and validate the ENPS models for RRT and RRT * , we present two ad-hoc implementations able to emulate the computation of the models using OpenMP and CUDA. Finally, we show the speedup of our solutions with respect to sequential baseline implementations. The results show a speedup up to 6x using OpenMP with 8 cores against the sequential implementation and up to 24x using CUDA against the best multi-threading configuration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1069-2509
1875-8835
DOI:10.3233/ICA-190616