Spatially dependent four-wave mixing in semiconductor quantum wells

We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 115; no. 17
Main Authors Zhang, Yufeng, Wang, Zhiping, Qiu, Jing, Hong, Yin, Yu, Benli
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can be modulated. The detailed explanations based on the dispersion relation are given, which are in good agreement with our results. Furthermore, we perform the interference between the FWM field and the same-frequency Gaussian beam. Our results show that the interference patterns can also be modulated via the detuning of the control field, which may provide a way to observe helical phase modulation via the intensity measurement. This work may be useful for investigating the nonlinear optical phenomena based on orbital angular momentum light.
AbstractList We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can be modulated. The detailed explanations based on the dispersion relation are given, which are in good agreement with our results. Furthermore, we perform the interference between the FWM field and the same-frequency Gaussian beam. Our results show that the interference patterns can also be modulated via the detuning of the control field, which may provide a way to observe helical phase modulation via the intensity measurement. This work may be useful for investigating the nonlinear optical phenomena based on orbital angular momentum light.
Author Zhang, Yufeng
Yu, Benli
Wang, Zhiping
Hong, Yin
Qiu, Jing
Author_xml – sequence: 1
  givenname: Yufeng
  surname: Zhang
  fullname: Zhang, Yufeng
  organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University
– sequence: 2
  givenname: Zhiping
  surname: Wang
  fullname: Wang, Zhiping
  organization: 2School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
– sequence: 3
  givenname: Jing
  surname: Qiu
  fullname: Qiu, Jing
  organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University
– sequence: 4
  givenname: Yin
  surname: Hong
  fullname: Hong, Yin
  organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University
– sequence: 5
  givenname: Benli
  surname: Yu
  fullname: Yu, Benli
  organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University
BookMark eNqdkN1LwzAUxYNMcJs--B8UfFLolo-mSR9l-AUDH9TncNemktEmXZJu7r-3sokgPvl0ufA7595zJmhkndUIXRI8IzhnczLjhBIq-AkaEyxEygiRIzTGGLM0Lzg5Q5MQ1sPKKWNjtHjpIBpomn1S6U7bStuY1K736Q62OmnNh7HvibFJ0K0pna36MjqfbHqwsW-TnW6acI5Oa2iCvjjOKXq7v3tdPKbL54enxe0yLRkVMS0Yr2XGKYWiFpUmqyqjuixYoTMpVyTTsBJSagwAFcgcCKkkFjWTQKAEWbApujr4dt5teh2iWg-P2uGkogwLyXmWi4GaH6jSuxC8rlVp4pDR2ejBNIpg9dWUIurY1KC4_qXovGnB7_9kbw5s-Hb9H7x1_gdUXVWzTxYKhpQ
CODEN APPLAB
CitedBy_id crossref_primary_10_1088_1555_6611_abee8e
crossref_primary_10_1088_1612_202X_ad1096
crossref_primary_10_1016_j_physleta_2024_129727
crossref_primary_10_1103_PhysRevA_102_033516
crossref_primary_10_1103_PhysRevA_103_013518
crossref_primary_10_1364_OE_420015
crossref_primary_10_1103_PhysRevA_102_063509
crossref_primary_10_1364_AO_528697
crossref_primary_10_1364_AO_533627
crossref_primary_10_1063_5_0145373
crossref_primary_10_1088_1361_6455_ac8386
crossref_primary_10_3389_fphy_2022_907284
crossref_primary_10_1007_s11467_020_0984_2
crossref_primary_10_1364_OE_440690
crossref_primary_10_1364_AO_392732
crossref_primary_10_1007_s11128_022_03449_1
crossref_primary_10_1103_PhysRevA_103_063705
crossref_primary_10_3389_fphy_2022_877859
crossref_primary_10_1063_5_0050488
crossref_primary_10_1088_1612_202X_ac5047
crossref_primary_10_1103_PhysRevA_101_023821
crossref_primary_10_1088_1402_4896_aba2b3
crossref_primary_10_1140_epjp_s13360_023_04509_w
crossref_primary_10_1063_5_0145999
crossref_primary_10_3389_fphy_2022_838124
crossref_primary_10_1088_1612_202X_ac86f7
crossref_primary_10_1140_epjp_s13360_023_04389_0
crossref_primary_10_1016_j_optcom_2024_131101
crossref_primary_10_1364_OE_516310
crossref_primary_10_1088_1361_6455_ad3ed1
crossref_primary_10_1142_S0217984924502385
crossref_primary_10_1088_1674_1056_ad0771
crossref_primary_10_1140_epjd_s10053_024_00937_0
crossref_primary_10_7498_aps_73_20231212
crossref_primary_10_1088_1555_6611_ad2dcf
crossref_primary_10_3390_sym16030261
crossref_primary_10_1063_5_0169415
crossref_primary_10_1364_OE_379245
crossref_primary_10_1140_epjd_s10053_023_00701_w
Cites_doi 10.1016/j.optcom.2009.05.015
10.1103/PhysRevLett.95.057401
10.1016/j.physleta.2007.12.012
10.1103/PhysRevA.95.051802
10.1103/PhysRevB.80.235408
10.1038/nnano.2015.334
10.1364/OE.22.029179
10.1103/PhysRevB.73.125344
10.1016/j.jlumin.2013.02.054
10.1103/PhysRevLett.102.013601
10.1364/OL.29.002294
10.1103/PhysRevLett.91.123602
10.1002/lpor.200810007
10.1103/PhysRevLett.68.1010
10.1063/1.4985706
10.1103/PhysRevA.99.033812
10.1103/PhysRevLett.95.010404
10.1103/PhysRevB.72.085323
10.1103/PhysRevB.75.155329
10.1103/PhysRevLett.114.123603
10.1364/OL.42.001201
10.1016/j.photonics.2010.09.004
10.1007/s00340-010-4365-3
10.1103/PhysRevB.67.121307
10.1103/PhysRevA.76.043809
10.1063/1.119199
10.1103/PhysRevLett.84.1019
10.1103/PhysRevLett.114.093602
10.1038/nmat1586
10.1103/PhysRevB.68.155305
10.1103/PhysRevA.84.043842
10.1364/OL.19.001744
10.1103/PhysRevA.45.8185
10.1103/PhysRevB.87.235310
10.1063/1.1768672
10.1103/PhysRevLett.91.093601
10.1063/1.4990023
10.1038/ncomms3527
10.1063/1.5082660
10.1103/PhysRevLett.91.183602
10.1038/nphoton.2012.138
10.1103/PhysRevA.77.033838
10.1364/OL.42.001059
10.1103/PhysRevB.24.5693
10.1063/1.2227647
10.1103/PhysRevLett.123.070506
10.1103/PhysRevLett.108.243601
10.1063/1.5027122
10.1103/PhysRevA.70.053818
10.1016/j.physrep.2006.03.005
10.1364/OL.37.003270
10.1038/nphoton.2013.355
10.1038/nature01935
10.1038/37562
10.1103/PhysRevLett.82.4611
ContentType Journal Article
Copyright Author(s)
2019 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5121275
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_5121275
apl
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11674002
  funderid: https://doi.org/10.13039/501100001809
– fundername: State Scholarship Fund of China Scholarship Council
  grantid: 201806505020
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-935f84522a9f7de1bd42ec939e488b14eab788e0aaada86a11d807f38a1aca893
ISSN 0003-6951
IngestDate Mon Jun 30 05:55:38 EDT 2025
Tue Jul 01 01:16:19 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Wed Nov 11 00:04:56 EST 2020
Fri Jun 21 00:14:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Published under license by AIP Publishing.
0003-6951/2019/115(17)/171905/5/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-935f84522a9f7de1bd42ec939e488b14eab788e0aaada86a11d807f38a1aca893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7119-7822
PQID 2307855467
PQPubID 2050678
PageCount 5
ParticipantIDs scitation_primary_10_1063_1_5121275
proquest_journals_2307855467
crossref_citationtrail_10_1063_1_5121275
crossref_primary_10_1063_1_5121275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191021
2019-10-21
PublicationDateYYYYMMDD 2019-10-21
PublicationDate_xml – month: 10
  year: 2019
  text: 20191021
  day: 21
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2019
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Zhu, Huang (c34) 2009
Deng, Payne, Garrett (c9) 2006
Wu, Payne, Hagley, Deng (c44) 2004
Paspalakis, Tsaousidou, Terzis (c36) 2006
Sun, Fan, Zhang, Gong (c12) 2013
Dey, Evers (c40) 2011
Paspalakis, Tsaousidou, Terzis (c5) 2006
Hu, Wijesinghe, Naquin, Maggio, Edwards, Lee (c56) 2017
Sun, Kim, Solomon, Waks (c55) 2016
Radwell, Clark, Piccirillo, Barnett, Franke-Arnold (c21) 2015
Yang, Hou, Lee (c33) 2008
Wang, Yang, Fazal, Ahmed, Yan, Huang, Ren, Yue, Dolinar, Tur (c27) 2012
Hao, Li, Yang (c42) 2009
Evangelou, Paspalakis (c15) 2011
Sirtori, Capasso, Sivco, Cho (c30) 1992
Walker, Arnold, Franke-Arnold (c22) 2012
Bastard (c29) 1981
Pan, Yu, Zhou, Zhang, Zhang, Lv, Li, Wang, Jing (c25) 2019
Padgett, Courtial, Allen (c18) 2004
Wang, Fabre, Jing (c23) 2017
Kosionis, Terzis, Paspalakis (c16) 2013
Olaya-Castro, Korkusinski, Hawrylak, Ivanov (c35) 2003
Wu, Yang (c46) 2004
Lü, Wu, Johansson, Jing, Zhang, Nori (c50) 2015
Jin, Hang, Jiang, Zhu, Zheng, Yao, Huang, Ma (c45) 2019
Zhang, Khadka, Anderson, Xiao (c49) 2009
Xiong, Wu (c53) 2018
Ding, Zhou, Shi, Zou, Guo (c43) 2012
Kang, Zhu (c8) 2003
Hamedi, Ruseckas, Paspalakis, Juzeliunas (c41) 2019
Solinas, Zanardi, Zanghì, Rossi (c54) 2003
Franke-Arnold, Allen, Padgett (c19) 2008
Serapiglia, Paspalakis, Sirtori, Vodopyanov, Phillips (c37) 2000
Imamoğlu, Ram (c1) 1994
Li (c39) 2007
Schmidt, Campman, Gossard, Imamoğlu (c3) 1997
Hao, Li, Liu, Song, Yang (c11) 2008
Ding, Zhou, Shi, Guo (c28) 2013
Dynes, Frogley, Rodger, Phillips (c4) 2005
Phillips, Wang, Rumyantsev, Kwong, Takayama, Binder (c38) 2003
Faist, Capasso, Sirtori, West, Pfeiffer (c2) 1997
Zhang, Ma, Zhang, Cao, Xu, Zhang (c24) 2017
Wu, Gao, Xu, Silvestri, Artoni, La Rocca, Bassani (c32) 2005
Du, Cao, Zhang, Jing (c51) 2017
Ruseckas, Juzeliunas, Öhberg, Fleischhauer (c48) 2005
Allen, Beijersbergen, Spreeuw, Woerdman (c17) 1992
Frogley, Dynes, Beck, Faist, Phillips (c6) 2006
Harris, Hau (c7) 1999
Kosionis, Terzis, Paspalakis (c14) 2011
Cao, Du, Feng, Qin, Marino, Kolobov, Jing (c52) 2017
Liu, Yang, Chuang, Chen, Liu, Huang (c13) 2014
Li, Huang (c47) 2007
Payne, Deng (c10) 2003
Grier (c26) 2003
Nicolas, Veissier, Giner, Giacobino, Maxein, Laurat (c20) 2014
(2023061716571839400_c33) 2008; 77
(2023061716571839400_c23) 2017; 95
(2023061716571839400_c32) 2005; 95
(2023061716571839400_c36) 2006; 100
(2023061716571839400_c40) 2011; 84
(2023061716571839400_c14) 2011; 104
(2023061716571839400_c22) 2012; 108
(2023061716571839400_c28) 2013; 4
(2023061716571839400_c50) 2015; 114
(2023061716571839400_c30) 1992; 68
(2023061716571839400_c46) 2004; 70
(2023061716571839400_c9) 2006; 429
(2023061716571839400_c37) 2000; 84
(2023061716571839400_c48) 2005; 95
(2023061716571839400_c8) 2003; 91
(2023061716571839400_c16) 2013; 140
(2023061716571839400_c44) 2004; 29
(2023061716571839400_c35) 2003; 68
(2023061716571839400_c56) 2017; 111
(2023061716571839400_c20) 2014; 8
(2023061716571839400_c34) 2009; 80
(2023061716571839400_c55) 2016; 11
(2023061716571839400_c41) 2019; 99
(2023061716571839400_c26) 2003; 424
(2023061716571839400_c12) 2013; 87
(2023061716571839400_c52) 2017; 42
(2023061716571839400_c17) 1992; 45
(2023061716571839400_c39) 2007; 75
(2023061716571839400_c54) 2003; 67
(2023061716571839400_c13) 2014; 22
(2023061716571839400_c10) 2003; 91
(2023061716571839400_c27) 2012; 6
(2023061716571839400_c7) 1999; 82
(2023061716571839400_c38) 2003; 91
(2023061716571839400_c21) 2015; 114
(2023061716571839400_c42) 2009; 282
(2023061716571839400_c3) 1997; 70
(2023061716571839400_c29) 1981; 24
(2023061716571839400_c53) 2018; 5
(2023061716571839400_c49) 2009; 102
(2023061716571839400_c11) 2008; 372
(2023061716571839400_c4) 2005; 72
(2023061716571839400_c5) 2006; 73
(2023061716571839400_c24) 2017; 42
(2023061716571839400_c2) 1997; 390
(2023061716571839400_c19) 2008; 2
(2023061716571839400_c31) 1997
(2023061716571839400_c15) 2011; 9
(2023061716571839400_c43) 2012; 37
(2023061716571839400_c45) 2019; 114
(2023061716571839400_c18) 2004; 57
(2023061716571839400_c6) 2006; 5
(2023061716571839400_c1) 1994; 19
(2023061716571839400_c25) 2019; 123
(2023061716571839400_c51) 2017; 110
(2023061716571839400_c47) 2007; 76
References_xml – start-page: 010404
  year: 2005
  ident: c48
  publication-title: Phys. Rev. Lett.
– start-page: 013601
  year: 2009
  ident: c49
  publication-title: Phys. Rev. Lett.
– start-page: 241103
  year: 2017
  ident: c51
  publication-title: Appl. Phys. Lett.
– start-page: 8185
  year: 1992
  ident: c17
  publication-title: Phys. Rev. A
– start-page: 2527
  year: 2013
  ident: c28
  publication-title: Nat. Commun.
– start-page: 125344
  year: 2006
  ident: c5
  publication-title: Phys. Rev. B
– start-page: 5693
  year: 1981
  ident: c29
  publication-title: Phys. Rev. B
– start-page: 121307(R)
  year: 2003
  ident: c54
  publication-title: Phys. Rev. B
– start-page: 243601
  year: 2012
  ident: c22
  publication-title: Phys. Rev. Lett.
– start-page: 488
  year: 2012
  ident: c27
  publication-title: Nat. Photonics
– start-page: 3455
  year: 1997
  ident: c3
  publication-title: Appl. Phys. Lett.
– start-page: 168
  year: 2011
  ident: c15
  publication-title: Photonics Nanostruct.: Fundam. Appl.
– start-page: 093601
  year: 2003
  ident: c8
  publication-title: Phys. Rev. Lett.
– start-page: 053818
  year: 2004
  ident: c46
  publication-title: Phys. Rev. A
– start-page: 2294
  year: 2004
  ident: c44
  publication-title: Opt. Lett.
– start-page: 044312
  year: 2006
  ident: c36
  publication-title: J. Appl. Phys.
– start-page: 183602
  year: 2003
  ident: c38
  publication-title: Phys. Rev. Lett.
– start-page: 539
  year: 2016
  ident: c55
  publication-title: Nat. Nanotechnol.
– start-page: 070506
  year: 2019
  ident: c25
  publication-title: Phys. Rev. Lett.
– start-page: 175
  year: 2006
  ident: c6
  publication-title: Nat. Mater.
– start-page: 1059
  year: 2017
  ident: c24
  publication-title: Opt. Lett.
– start-page: 589
  year: 1997
  ident: c2
  publication-title: Nature
– start-page: 123
  year: 2006
  ident: c9
  publication-title: Phys. Rep.
– start-page: 35
  year: 2004
  ident: c18
  publication-title: Phys. Today
– start-page: 1019
  year: 2000
  ident: c37
  publication-title: Phys. Rev. Lett.
– start-page: 057401
  year: 2005
  ident: c32
  publication-title: Phys. Rev. Lett.
– start-page: 3339
  year: 2009
  ident: c42
  publication-title: Opt. Commun.
– start-page: 123603
  year: 2015
  ident: c21
  publication-title: Phys. Rev. Lett.
– start-page: 3270
  year: 2012
  ident: c43
  publication-title: Opt. Lett.
– start-page: 810
  year: 2003
  ident: c26
  publication-title: Nature
– start-page: 153503
  year: 2017
  ident: c56
  publication-title: Appl. Phys. Lett.
– start-page: 299
  year: 2008
  ident: c19
  publication-title: Laser Photonics Rev.
– start-page: 051104
  year: 2019
  ident: c45
  publication-title: Appl. Phys. Lett.
– start-page: 031305
  year: 2018
  ident: c53
  publication-title: Appl. Phys. Rev.
– start-page: 051802(R)
  year: 2017
  ident: c23
  publication-title: Phys. Rev. A
– start-page: 4611
  year: 1999
  ident: c7
  publication-title: Phys. Rev. Lett.
– start-page: 085323
  year: 2005
  ident: c4
  publication-title: Phys. Rev. B
– start-page: 1010
  year: 1992
  ident: c30
  publication-title: Phys. Rev. Lett.
– start-page: 2509
  year: 2008
  ident: c11
  publication-title: Phys. Lett. A
– start-page: 1744
  year: 1994
  ident: c1
  publication-title: Opt. Lett.
– start-page: 033812
  year: 2019
  ident: c41
  publication-title: Phys. Rev. A
– start-page: 1201
  year: 2017
  ident: c52
  publication-title: Opt. Lett.
– start-page: 235310
  year: 2013
  ident: c12
  publication-title: Phys. Rev. B
– start-page: 33
  year: 2011
  ident: c14
  publication-title: Appl. Phys. B
– start-page: 130
  year: 2013
  ident: c16
  publication-title: J. Lumin.
– start-page: 033838
  year: 2008
  ident: c33
  publication-title: Phys. Rev. A
– start-page: 155329
  year: 2007
  ident: c39
  publication-title: Phys. Rev. B
– start-page: 235408
  year: 2009
  ident: c34
  publication-title: Phys. Rev. B
– start-page: 155305
  year: 2003
  ident: c35
  publication-title: Phys. Rev. B
– start-page: 234
  year: 2014
  ident: c20
  publication-title: Nat. Photonics
– start-page: 043809
  year: 2007
  ident: c47
  publication-title: Phys. Rev. A
– start-page: 123602
  year: 2003
  ident: c10
  publication-title: Phys. Rev. Lett.
– start-page: 29179
  year: 2014
  ident: c13
  publication-title: Opt. Express
– start-page: 043842
  year: 2011
  ident: c40
  publication-title: Phys. Rev. A
– start-page: 093602
  year: 2015
  ident: c50
  publication-title: Phys. Rev. Lett.
– volume: 282
  start-page: 3339
  year: 2009
  ident: 2023061716571839400_c42
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2009.05.015
– volume: 95
  start-page: 057401
  year: 2005
  ident: 2023061716571839400_c32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.057401
– volume-title: Quantum Optics
  year: 1997
  ident: 2023061716571839400_c31
– volume: 372
  start-page: 2509
  year: 2008
  ident: 2023061716571839400_c11
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.12.012
– volume: 95
  start-page: 051802(R)
  year: 2017
  ident: 2023061716571839400_c23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.051802
– volume: 80
  start-page: 235408
  year: 2009
  ident: 2023061716571839400_c34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.235408
– volume: 11
  start-page: 539
  year: 2016
  ident: 2023061716571839400_c55
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.334
– volume: 22
  start-page: 29179
  year: 2014
  ident: 2023061716571839400_c13
  publication-title: Opt. Express
  doi: 10.1364/OE.22.029179
– volume: 73
  start-page: 125344
  year: 2006
  ident: 2023061716571839400_c5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.125344
– volume: 140
  start-page: 130
  year: 2013
  ident: 2023061716571839400_c16
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.02.054
– volume: 102
  start-page: 013601
  year: 2009
  ident: 2023061716571839400_c49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.013601
– volume: 29
  start-page: 2294
  year: 2004
  ident: 2023061716571839400_c44
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.002294
– volume: 91
  start-page: 123602
  year: 2003
  ident: 2023061716571839400_c10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.123602
– volume: 2
  start-page: 299
  year: 2008
  ident: 2023061716571839400_c19
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.200810007
– volume: 68
  start-page: 1010
  year: 1992
  ident: 2023061716571839400_c30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1010
– volume: 110
  start-page: 241103
  year: 2017
  ident: 2023061716571839400_c51
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4985706
– volume: 99
  start-page: 033812
  year: 2019
  ident: 2023061716571839400_c41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.033812
– volume: 95
  start-page: 010404
  year: 2005
  ident: 2023061716571839400_c48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.010404
– volume: 72
  start-page: 085323
  year: 2005
  ident: 2023061716571839400_c4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.085323
– volume: 75
  start-page: 155329
  year: 2007
  ident: 2023061716571839400_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.155329
– volume: 114
  start-page: 123603
  year: 2015
  ident: 2023061716571839400_c21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.123603
– volume: 42
  start-page: 1201
  year: 2017
  ident: 2023061716571839400_c52
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.001201
– volume: 9
  start-page: 168
  year: 2011
  ident: 2023061716571839400_c15
  publication-title: Photonics Nanostruct.: Fundam. Appl.
  doi: 10.1016/j.photonics.2010.09.004
– volume: 104
  start-page: 33
  year: 2011
  ident: 2023061716571839400_c14
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-010-4365-3
– volume: 67
  start-page: 121307(R)
  year: 2003
  ident: 2023061716571839400_c54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.121307
– volume: 76
  start-page: 043809
  year: 2007
  ident: 2023061716571839400_c47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.043809
– volume: 70
  start-page: 3455
  year: 1997
  ident: 2023061716571839400_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119199
– volume: 84
  start-page: 1019
  year: 2000
  ident: 2023061716571839400_c37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.1019
– volume: 114
  start-page: 093602
  year: 2015
  ident: 2023061716571839400_c50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.093602
– volume: 5
  start-page: 175
  year: 2006
  ident: 2023061716571839400_c6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1586
– volume: 68
  start-page: 155305
  year: 2003
  ident: 2023061716571839400_c35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.155305
– volume: 84
  start-page: 043842
  year: 2011
  ident: 2023061716571839400_c40
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.043842
– volume: 19
  start-page: 1744
  year: 1994
  ident: 2023061716571839400_c1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.19.001744
– volume: 45
  start-page: 8185
  year: 1992
  ident: 2023061716571839400_c17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8185
– volume: 87
  start-page: 235310
  year: 2013
  ident: 2023061716571839400_c12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.235310
– volume: 57
  start-page: 35
  issue: 5
  year: 2004
  ident: 2023061716571839400_c18
  publication-title: Phys. Today
  doi: 10.1063/1.1768672
– volume: 91
  start-page: 093601
  year: 2003
  ident: 2023061716571839400_c8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.093601
– volume: 111
  start-page: 153503
  year: 2017
  ident: 2023061716571839400_c56
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4990023
– volume: 4
  start-page: 2527
  year: 2013
  ident: 2023061716571839400_c28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3527
– volume: 114
  start-page: 051104
  year: 2019
  ident: 2023061716571839400_c45
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5082660
– volume: 91
  start-page: 183602
  year: 2003
  ident: 2023061716571839400_c38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.183602
– volume: 6
  start-page: 488
  year: 2012
  ident: 2023061716571839400_c27
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.138
– volume: 77
  start-page: 033838
  year: 2008
  ident: 2023061716571839400_c33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.033838
– volume: 42
  start-page: 1059
  year: 2017
  ident: 2023061716571839400_c24
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.001059
– volume: 24
  start-page: 5693
  year: 1981
  ident: 2023061716571839400_c29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.24.5693
– volume: 100
  start-page: 044312
  year: 2006
  ident: 2023061716571839400_c36
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2227647
– volume: 123
  start-page: 070506
  year: 2019
  ident: 2023061716571839400_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.070506
– volume: 108
  start-page: 243601
  year: 2012
  ident: 2023061716571839400_c22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.243601
– volume: 5
  start-page: 031305
  year: 2018
  ident: 2023061716571839400_c53
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5027122
– volume: 70
  start-page: 053818
  year: 2004
  ident: 2023061716571839400_c46
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.053818
– volume: 429
  start-page: 123
  year: 2006
  ident: 2023061716571839400_c9
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.03.005
– volume: 37
  start-page: 3270
  year: 2012
  ident: 2023061716571839400_c43
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.003270
– volume: 8
  start-page: 234
  year: 2014
  ident: 2023061716571839400_c20
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.355
– volume: 424
  start-page: 810
  year: 2003
  ident: 2023061716571839400_c26
  publication-title: Nature
  doi: 10.1038/nature01935
– volume: 390
  start-page: 589
  year: 1997
  ident: 2023061716571839400_c2
  publication-title: Nature
  doi: 10.1038/37562
– volume: 82
  start-page: 4611
  year: 1999
  ident: 2023061716571839400_c7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.4611
SSID ssj0005233
Score 2.4908621
Snippet We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Angular momentum
Applied physics
Electrons
Four-wave mixing
Gaussian beams (optics)
Interference
Phase modulation
Quantum wells
Title Spatially dependent four-wave mixing in semiconductor quantum wells
URI http://dx.doi.org/10.1063/1.5121275
https://www.proquest.com/docview/2307855467
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgEwIeEAwQhYEi4AEpyojjNLEfx9hUTd1AopW6p8hOHKlSl0xtytdfz11tJ6lUTcBLlFrOh-5-Pf98uQ9C3hdpiu78YaBVrINYDcNAqJAHspQxywslRYT5zheXyWgan8-GM9fv3maXNOoo_70zr-R_tApjoFfMkv0HzbY3hQE4B_3CETQMx7_SMfYThqcsfvmul23jl3Bh8AN7Cl3Pf9qElRVGwNcVlnatl5hHCQvNtY9uu1WfnDpGarwdK3-xSfVpSXfrW75al9oueOgyna_983n3-8pUJRjV3dAndJmYK_teBirQPEe9iA33-WgrhOGreZ0t-8qCRNgSstqY1DBFT6i1ss7mmhxOB650pzEH9oR-hSPgJFiGvlux3Ff6yy_Z2XQ8zians8ldsh_BTgFM3f7x54vxt16cD2OubSK-misvlbCP7a23SUm307gPNMRERPRIx-QxeWR3C96xUf0TckdXB-Rhr4bkAblnxfOUnLRw8Fo4eC0cPAMHb155W3DwLBy8DRyekenZ6eRkFNgeGUHOorQJBBuWHKviS1GmhaaqiCOdCyY0WGZFYy1VyrkOpZSF5ImktOBhWjIuqcwlkNXnZK-qK_2CeJwluQwLqnPF4kjlPBQqjyjjGHAquBqQD05ImRML9jFZZJtAhoRlNLPyHJC37dQbUzVl16RDJ-nM_qlWGeYlbCIn0wF510r_tpvsmPW9XnYzspuifHn7o16RBx3mD8les1zr18A1G_XGoukPRseB3w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+dependent+four-wave+mixing+in+semiconductor+quantum+wells&rft.jtitle=Applied+physics+letters&rft.au=Zhang%2C+Yufeng&rft.au=Qiu+Jing&rft.au=Yin%2C+Hong&rft.au=Benli%2C+Yu&rft.date=2019-10-21&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=115&rft.issue=17&rft_id=info:doi/10.1063%2F1.5121275&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon