Spatially dependent four-wave mixing in semiconductor quantum wells
We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can...
Saved in:
Published in | Applied physics letters Vol. 115; no. 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can be modulated. The detailed explanations based on the dispersion relation are given, which are in good agreement with our results. Furthermore, we perform the interference between the FWM field and the same-frequency Gaussian beam. Our results show that the interference patterns can also be modulated via the detuning of the control field, which may provide a way to observe helical phase modulation via the intensity measurement. This work may be useful for investigating the nonlinear optical phenomena based on orbital angular momentum light. |
---|---|
AbstractList | We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can be modulated. The detailed explanations based on the dispersion relation are given, which are in good agreement with our results. Furthermore, we perform the interference between the FWM field and the same-frequency Gaussian beam. Our results show that the interference patterns can also be modulated via the detuning of the control field, which may provide a way to observe helical phase modulation via the intensity measurement. This work may be useful for investigating the nonlinear optical phenomena based on orbital angular momentum light. |
Author | Zhang, Yufeng Yu, Benli Wang, Zhiping Hong, Yin Qiu, Jing |
Author_xml | – sequence: 1 givenname: Yufeng surname: Zhang fullname: Zhang, Yufeng organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University – sequence: 2 givenname: Zhiping surname: Wang fullname: Wang, Zhiping organization: 2School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom – sequence: 3 givenname: Jing surname: Qiu fullname: Qiu, Jing organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University – sequence: 4 givenname: Yin surname: Hong fullname: Hong, Yin organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University – sequence: 5 givenname: Benli surname: Yu fullname: Yu, Benli organization: Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University |
BookMark | eNqdkN1LwzAUxYNMcJs--B8UfFLolo-mSR9l-AUDH9TncNemktEmXZJu7r-3sokgPvl0ufA7595zJmhkndUIXRI8IzhnczLjhBIq-AkaEyxEygiRIzTGGLM0Lzg5Q5MQ1sPKKWNjtHjpIBpomn1S6U7bStuY1K736Q62OmnNh7HvibFJ0K0pna36MjqfbHqwsW-TnW6acI5Oa2iCvjjOKXq7v3tdPKbL54enxe0yLRkVMS0Yr2XGKYWiFpUmqyqjuixYoTMpVyTTsBJSagwAFcgcCKkkFjWTQKAEWbApujr4dt5teh2iWg-P2uGkogwLyXmWi4GaH6jSuxC8rlVp4pDR2ejBNIpg9dWUIurY1KC4_qXovGnB7_9kbw5s-Hb9H7x1_gdUXVWzTxYKhpQ |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1088_1555_6611_abee8e crossref_primary_10_1088_1612_202X_ad1096 crossref_primary_10_1016_j_physleta_2024_129727 crossref_primary_10_1103_PhysRevA_102_033516 crossref_primary_10_1103_PhysRevA_103_013518 crossref_primary_10_1364_OE_420015 crossref_primary_10_1103_PhysRevA_102_063509 crossref_primary_10_1364_AO_528697 crossref_primary_10_1364_AO_533627 crossref_primary_10_1063_5_0145373 crossref_primary_10_1088_1361_6455_ac8386 crossref_primary_10_3389_fphy_2022_907284 crossref_primary_10_1007_s11467_020_0984_2 crossref_primary_10_1364_OE_440690 crossref_primary_10_1364_AO_392732 crossref_primary_10_1007_s11128_022_03449_1 crossref_primary_10_1103_PhysRevA_103_063705 crossref_primary_10_3389_fphy_2022_877859 crossref_primary_10_1063_5_0050488 crossref_primary_10_1088_1612_202X_ac5047 crossref_primary_10_1103_PhysRevA_101_023821 crossref_primary_10_1088_1402_4896_aba2b3 crossref_primary_10_1140_epjp_s13360_023_04509_w crossref_primary_10_1063_5_0145999 crossref_primary_10_3389_fphy_2022_838124 crossref_primary_10_1088_1612_202X_ac86f7 crossref_primary_10_1140_epjp_s13360_023_04389_0 crossref_primary_10_1016_j_optcom_2024_131101 crossref_primary_10_1364_OE_516310 crossref_primary_10_1088_1361_6455_ad3ed1 crossref_primary_10_1142_S0217984924502385 crossref_primary_10_1088_1674_1056_ad0771 crossref_primary_10_1140_epjd_s10053_024_00937_0 crossref_primary_10_7498_aps_73_20231212 crossref_primary_10_1088_1555_6611_ad2dcf crossref_primary_10_3390_sym16030261 crossref_primary_10_1063_5_0169415 crossref_primary_10_1364_OE_379245 crossref_primary_10_1140_epjd_s10053_023_00701_w |
Cites_doi | 10.1016/j.optcom.2009.05.015 10.1103/PhysRevLett.95.057401 10.1016/j.physleta.2007.12.012 10.1103/PhysRevA.95.051802 10.1103/PhysRevB.80.235408 10.1038/nnano.2015.334 10.1364/OE.22.029179 10.1103/PhysRevB.73.125344 10.1016/j.jlumin.2013.02.054 10.1103/PhysRevLett.102.013601 10.1364/OL.29.002294 10.1103/PhysRevLett.91.123602 10.1002/lpor.200810007 10.1103/PhysRevLett.68.1010 10.1063/1.4985706 10.1103/PhysRevA.99.033812 10.1103/PhysRevLett.95.010404 10.1103/PhysRevB.72.085323 10.1103/PhysRevB.75.155329 10.1103/PhysRevLett.114.123603 10.1364/OL.42.001201 10.1016/j.photonics.2010.09.004 10.1007/s00340-010-4365-3 10.1103/PhysRevB.67.121307 10.1103/PhysRevA.76.043809 10.1063/1.119199 10.1103/PhysRevLett.84.1019 10.1103/PhysRevLett.114.093602 10.1038/nmat1586 10.1103/PhysRevB.68.155305 10.1103/PhysRevA.84.043842 10.1364/OL.19.001744 10.1103/PhysRevA.45.8185 10.1103/PhysRevB.87.235310 10.1063/1.1768672 10.1103/PhysRevLett.91.093601 10.1063/1.4990023 10.1038/ncomms3527 10.1063/1.5082660 10.1103/PhysRevLett.91.183602 10.1038/nphoton.2012.138 10.1103/PhysRevA.77.033838 10.1364/OL.42.001059 10.1103/PhysRevB.24.5693 10.1063/1.2227647 10.1103/PhysRevLett.123.070506 10.1103/PhysRevLett.108.243601 10.1063/1.5027122 10.1103/PhysRevA.70.053818 10.1016/j.physrep.2006.03.005 10.1364/OL.37.003270 10.1038/nphoton.2013.355 10.1038/nature01935 10.1038/37562 10.1103/PhysRevLett.82.4611 |
ContentType | Journal Article |
Copyright | Author(s) 2019 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2019 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5121275 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_5121275 apl |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11674002 funderid: https://doi.org/10.13039/501100001809 – fundername: State Scholarship Fund of China Scholarship Council grantid: 201806505020 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-935f84522a9f7de1bd42ec939e488b14eab788e0aaada86a11d807f38a1aca893 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 05:55:38 EDT 2025 Tue Jul 01 01:16:19 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Wed Nov 11 00:04:56 EST 2020 Fri Jun 21 00:14:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Published under license by AIP Publishing. 0003-6951/2019/115(17)/171905/5/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-935f84522a9f7de1bd42ec939e488b14eab788e0aaada86a11d807f38a1aca893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7119-7822 |
PQID | 2307855467 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_1_5121275 proquest_journals_2307855467 crossref_citationtrail_10_1063_1_5121275 crossref_primary_10_1063_1_5121275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191021 2019-10-21 |
PublicationDateYYYYMMDD | 2019-10-21 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191021 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2019 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Zhu, Huang (c34) 2009 Deng, Payne, Garrett (c9) 2006 Wu, Payne, Hagley, Deng (c44) 2004 Paspalakis, Tsaousidou, Terzis (c36) 2006 Sun, Fan, Zhang, Gong (c12) 2013 Dey, Evers (c40) 2011 Paspalakis, Tsaousidou, Terzis (c5) 2006 Hu, Wijesinghe, Naquin, Maggio, Edwards, Lee (c56) 2017 Sun, Kim, Solomon, Waks (c55) 2016 Radwell, Clark, Piccirillo, Barnett, Franke-Arnold (c21) 2015 Yang, Hou, Lee (c33) 2008 Wang, Yang, Fazal, Ahmed, Yan, Huang, Ren, Yue, Dolinar, Tur (c27) 2012 Hao, Li, Yang (c42) 2009 Evangelou, Paspalakis (c15) 2011 Sirtori, Capasso, Sivco, Cho (c30) 1992 Walker, Arnold, Franke-Arnold (c22) 2012 Bastard (c29) 1981 Pan, Yu, Zhou, Zhang, Zhang, Lv, Li, Wang, Jing (c25) 2019 Padgett, Courtial, Allen (c18) 2004 Wang, Fabre, Jing (c23) 2017 Kosionis, Terzis, Paspalakis (c16) 2013 Olaya-Castro, Korkusinski, Hawrylak, Ivanov (c35) 2003 Wu, Yang (c46) 2004 Lü, Wu, Johansson, Jing, Zhang, Nori (c50) 2015 Jin, Hang, Jiang, Zhu, Zheng, Yao, Huang, Ma (c45) 2019 Zhang, Khadka, Anderson, Xiao (c49) 2009 Xiong, Wu (c53) 2018 Ding, Zhou, Shi, Zou, Guo (c43) 2012 Kang, Zhu (c8) 2003 Hamedi, Ruseckas, Paspalakis, Juzeliunas (c41) 2019 Solinas, Zanardi, Zanghì, Rossi (c54) 2003 Franke-Arnold, Allen, Padgett (c19) 2008 Serapiglia, Paspalakis, Sirtori, Vodopyanov, Phillips (c37) 2000 Imamoğlu, Ram (c1) 1994 Li (c39) 2007 Schmidt, Campman, Gossard, Imamoğlu (c3) 1997 Hao, Li, Liu, Song, Yang (c11) 2008 Ding, Zhou, Shi, Guo (c28) 2013 Dynes, Frogley, Rodger, Phillips (c4) 2005 Phillips, Wang, Rumyantsev, Kwong, Takayama, Binder (c38) 2003 Faist, Capasso, Sirtori, West, Pfeiffer (c2) 1997 Zhang, Ma, Zhang, Cao, Xu, Zhang (c24) 2017 Wu, Gao, Xu, Silvestri, Artoni, La Rocca, Bassani (c32) 2005 Du, Cao, Zhang, Jing (c51) 2017 Ruseckas, Juzeliunas, Öhberg, Fleischhauer (c48) 2005 Allen, Beijersbergen, Spreeuw, Woerdman (c17) 1992 Frogley, Dynes, Beck, Faist, Phillips (c6) 2006 Harris, Hau (c7) 1999 Kosionis, Terzis, Paspalakis (c14) 2011 Cao, Du, Feng, Qin, Marino, Kolobov, Jing (c52) 2017 Liu, Yang, Chuang, Chen, Liu, Huang (c13) 2014 Li, Huang (c47) 2007 Payne, Deng (c10) 2003 Grier (c26) 2003 Nicolas, Veissier, Giner, Giacobino, Maxein, Laurat (c20) 2014 (2023061716571839400_c33) 2008; 77 (2023061716571839400_c23) 2017; 95 (2023061716571839400_c32) 2005; 95 (2023061716571839400_c36) 2006; 100 (2023061716571839400_c40) 2011; 84 (2023061716571839400_c14) 2011; 104 (2023061716571839400_c22) 2012; 108 (2023061716571839400_c28) 2013; 4 (2023061716571839400_c50) 2015; 114 (2023061716571839400_c30) 1992; 68 (2023061716571839400_c46) 2004; 70 (2023061716571839400_c9) 2006; 429 (2023061716571839400_c37) 2000; 84 (2023061716571839400_c48) 2005; 95 (2023061716571839400_c8) 2003; 91 (2023061716571839400_c16) 2013; 140 (2023061716571839400_c44) 2004; 29 (2023061716571839400_c35) 2003; 68 (2023061716571839400_c56) 2017; 111 (2023061716571839400_c20) 2014; 8 (2023061716571839400_c34) 2009; 80 (2023061716571839400_c55) 2016; 11 (2023061716571839400_c41) 2019; 99 (2023061716571839400_c26) 2003; 424 (2023061716571839400_c12) 2013; 87 (2023061716571839400_c52) 2017; 42 (2023061716571839400_c17) 1992; 45 (2023061716571839400_c39) 2007; 75 (2023061716571839400_c54) 2003; 67 (2023061716571839400_c13) 2014; 22 (2023061716571839400_c10) 2003; 91 (2023061716571839400_c27) 2012; 6 (2023061716571839400_c7) 1999; 82 (2023061716571839400_c38) 2003; 91 (2023061716571839400_c21) 2015; 114 (2023061716571839400_c42) 2009; 282 (2023061716571839400_c3) 1997; 70 (2023061716571839400_c29) 1981; 24 (2023061716571839400_c53) 2018; 5 (2023061716571839400_c49) 2009; 102 (2023061716571839400_c11) 2008; 372 (2023061716571839400_c4) 2005; 72 (2023061716571839400_c5) 2006; 73 (2023061716571839400_c24) 2017; 42 (2023061716571839400_c2) 1997; 390 (2023061716571839400_c19) 2008; 2 (2023061716571839400_c31) 1997 (2023061716571839400_c15) 2011; 9 (2023061716571839400_c43) 2012; 37 (2023061716571839400_c45) 2019; 114 (2023061716571839400_c18) 2004; 57 (2023061716571839400_c6) 2006; 5 (2023061716571839400_c1) 1994; 19 (2023061716571839400_c25) 2019; 123 (2023061716571839400_c51) 2017; 110 (2023061716571839400_c47) 2007; 76 |
References_xml | – start-page: 010404 year: 2005 ident: c48 publication-title: Phys. Rev. Lett. – start-page: 013601 year: 2009 ident: c49 publication-title: Phys. Rev. Lett. – start-page: 241103 year: 2017 ident: c51 publication-title: Appl. Phys. Lett. – start-page: 8185 year: 1992 ident: c17 publication-title: Phys. Rev. A – start-page: 2527 year: 2013 ident: c28 publication-title: Nat. Commun. – start-page: 125344 year: 2006 ident: c5 publication-title: Phys. Rev. B – start-page: 5693 year: 1981 ident: c29 publication-title: Phys. Rev. B – start-page: 121307(R) year: 2003 ident: c54 publication-title: Phys. Rev. B – start-page: 243601 year: 2012 ident: c22 publication-title: Phys. Rev. Lett. – start-page: 488 year: 2012 ident: c27 publication-title: Nat. Photonics – start-page: 3455 year: 1997 ident: c3 publication-title: Appl. Phys. Lett. – start-page: 168 year: 2011 ident: c15 publication-title: Photonics Nanostruct.: Fundam. Appl. – start-page: 093601 year: 2003 ident: c8 publication-title: Phys. Rev. Lett. – start-page: 053818 year: 2004 ident: c46 publication-title: Phys. Rev. A – start-page: 2294 year: 2004 ident: c44 publication-title: Opt. Lett. – start-page: 044312 year: 2006 ident: c36 publication-title: J. Appl. Phys. – start-page: 183602 year: 2003 ident: c38 publication-title: Phys. Rev. Lett. – start-page: 539 year: 2016 ident: c55 publication-title: Nat. Nanotechnol. – start-page: 070506 year: 2019 ident: c25 publication-title: Phys. Rev. Lett. – start-page: 175 year: 2006 ident: c6 publication-title: Nat. Mater. – start-page: 1059 year: 2017 ident: c24 publication-title: Opt. Lett. – start-page: 589 year: 1997 ident: c2 publication-title: Nature – start-page: 123 year: 2006 ident: c9 publication-title: Phys. Rep. – start-page: 35 year: 2004 ident: c18 publication-title: Phys. Today – start-page: 1019 year: 2000 ident: c37 publication-title: Phys. Rev. Lett. – start-page: 057401 year: 2005 ident: c32 publication-title: Phys. Rev. Lett. – start-page: 3339 year: 2009 ident: c42 publication-title: Opt. Commun. – start-page: 123603 year: 2015 ident: c21 publication-title: Phys. Rev. Lett. – start-page: 3270 year: 2012 ident: c43 publication-title: Opt. Lett. – start-page: 810 year: 2003 ident: c26 publication-title: Nature – start-page: 153503 year: 2017 ident: c56 publication-title: Appl. Phys. Lett. – start-page: 299 year: 2008 ident: c19 publication-title: Laser Photonics Rev. – start-page: 051104 year: 2019 ident: c45 publication-title: Appl. Phys. Lett. – start-page: 031305 year: 2018 ident: c53 publication-title: Appl. Phys. Rev. – start-page: 051802(R) year: 2017 ident: c23 publication-title: Phys. Rev. A – start-page: 4611 year: 1999 ident: c7 publication-title: Phys. Rev. Lett. – start-page: 085323 year: 2005 ident: c4 publication-title: Phys. Rev. B – start-page: 1010 year: 1992 ident: c30 publication-title: Phys. Rev. Lett. – start-page: 2509 year: 2008 ident: c11 publication-title: Phys. Lett. A – start-page: 1744 year: 1994 ident: c1 publication-title: Opt. Lett. – start-page: 033812 year: 2019 ident: c41 publication-title: Phys. Rev. A – start-page: 1201 year: 2017 ident: c52 publication-title: Opt. Lett. – start-page: 235310 year: 2013 ident: c12 publication-title: Phys. Rev. B – start-page: 33 year: 2011 ident: c14 publication-title: Appl. Phys. B – start-page: 130 year: 2013 ident: c16 publication-title: J. Lumin. – start-page: 033838 year: 2008 ident: c33 publication-title: Phys. Rev. A – start-page: 155329 year: 2007 ident: c39 publication-title: Phys. Rev. B – start-page: 235408 year: 2009 ident: c34 publication-title: Phys. Rev. B – start-page: 155305 year: 2003 ident: c35 publication-title: Phys. Rev. B – start-page: 234 year: 2014 ident: c20 publication-title: Nat. Photonics – start-page: 043809 year: 2007 ident: c47 publication-title: Phys. Rev. A – start-page: 123602 year: 2003 ident: c10 publication-title: Phys. Rev. Lett. – start-page: 29179 year: 2014 ident: c13 publication-title: Opt. Express – start-page: 043842 year: 2011 ident: c40 publication-title: Phys. Rev. A – start-page: 093602 year: 2015 ident: c50 publication-title: Phys. Rev. Lett. – volume: 282 start-page: 3339 year: 2009 ident: 2023061716571839400_c42 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.05.015 – volume: 95 start-page: 057401 year: 2005 ident: 2023061716571839400_c32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.057401 – volume-title: Quantum Optics year: 1997 ident: 2023061716571839400_c31 – volume: 372 start-page: 2509 year: 2008 ident: 2023061716571839400_c11 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.12.012 – volume: 95 start-page: 051802(R) year: 2017 ident: 2023061716571839400_c23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.051802 – volume: 80 start-page: 235408 year: 2009 ident: 2023061716571839400_c34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235408 – volume: 11 start-page: 539 year: 2016 ident: 2023061716571839400_c55 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.334 – volume: 22 start-page: 29179 year: 2014 ident: 2023061716571839400_c13 publication-title: Opt. Express doi: 10.1364/OE.22.029179 – volume: 73 start-page: 125344 year: 2006 ident: 2023061716571839400_c5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.125344 – volume: 140 start-page: 130 year: 2013 ident: 2023061716571839400_c16 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.02.054 – volume: 102 start-page: 013601 year: 2009 ident: 2023061716571839400_c49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.013601 – volume: 29 start-page: 2294 year: 2004 ident: 2023061716571839400_c44 publication-title: Opt. Lett. doi: 10.1364/OL.29.002294 – volume: 91 start-page: 123602 year: 2003 ident: 2023061716571839400_c10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.123602 – volume: 2 start-page: 299 year: 2008 ident: 2023061716571839400_c19 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.200810007 – volume: 68 start-page: 1010 year: 1992 ident: 2023061716571839400_c30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1010 – volume: 110 start-page: 241103 year: 2017 ident: 2023061716571839400_c51 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4985706 – volume: 99 start-page: 033812 year: 2019 ident: 2023061716571839400_c41 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.033812 – volume: 95 start-page: 010404 year: 2005 ident: 2023061716571839400_c48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.010404 – volume: 72 start-page: 085323 year: 2005 ident: 2023061716571839400_c4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.085323 – volume: 75 start-page: 155329 year: 2007 ident: 2023061716571839400_c39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.155329 – volume: 114 start-page: 123603 year: 2015 ident: 2023061716571839400_c21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.123603 – volume: 42 start-page: 1201 year: 2017 ident: 2023061716571839400_c52 publication-title: Opt. Lett. doi: 10.1364/OL.42.001201 – volume: 9 start-page: 168 year: 2011 ident: 2023061716571839400_c15 publication-title: Photonics Nanostruct.: Fundam. Appl. doi: 10.1016/j.photonics.2010.09.004 – volume: 104 start-page: 33 year: 2011 ident: 2023061716571839400_c14 publication-title: Appl. Phys. B doi: 10.1007/s00340-010-4365-3 – volume: 67 start-page: 121307(R) year: 2003 ident: 2023061716571839400_c54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.121307 – volume: 76 start-page: 043809 year: 2007 ident: 2023061716571839400_c47 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.043809 – volume: 70 start-page: 3455 year: 1997 ident: 2023061716571839400_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.119199 – volume: 84 start-page: 1019 year: 2000 ident: 2023061716571839400_c37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.1019 – volume: 114 start-page: 093602 year: 2015 ident: 2023061716571839400_c50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.093602 – volume: 5 start-page: 175 year: 2006 ident: 2023061716571839400_c6 publication-title: Nat. Mater. doi: 10.1038/nmat1586 – volume: 68 start-page: 155305 year: 2003 ident: 2023061716571839400_c35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.155305 – volume: 84 start-page: 043842 year: 2011 ident: 2023061716571839400_c40 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043842 – volume: 19 start-page: 1744 year: 1994 ident: 2023061716571839400_c1 publication-title: Opt. Lett. doi: 10.1364/OL.19.001744 – volume: 45 start-page: 8185 year: 1992 ident: 2023061716571839400_c17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8185 – volume: 87 start-page: 235310 year: 2013 ident: 2023061716571839400_c12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.235310 – volume: 57 start-page: 35 issue: 5 year: 2004 ident: 2023061716571839400_c18 publication-title: Phys. Today doi: 10.1063/1.1768672 – volume: 91 start-page: 093601 year: 2003 ident: 2023061716571839400_c8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.093601 – volume: 111 start-page: 153503 year: 2017 ident: 2023061716571839400_c56 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4990023 – volume: 4 start-page: 2527 year: 2013 ident: 2023061716571839400_c28 publication-title: Nat. Commun. doi: 10.1038/ncomms3527 – volume: 114 start-page: 051104 year: 2019 ident: 2023061716571839400_c45 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5082660 – volume: 91 start-page: 183602 year: 2003 ident: 2023061716571839400_c38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.183602 – volume: 6 start-page: 488 year: 2012 ident: 2023061716571839400_c27 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.138 – volume: 77 start-page: 033838 year: 2008 ident: 2023061716571839400_c33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.033838 – volume: 42 start-page: 1059 year: 2017 ident: 2023061716571839400_c24 publication-title: Opt. Lett. doi: 10.1364/OL.42.001059 – volume: 24 start-page: 5693 year: 1981 ident: 2023061716571839400_c29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.24.5693 – volume: 100 start-page: 044312 year: 2006 ident: 2023061716571839400_c36 publication-title: J. Appl. Phys. doi: 10.1063/1.2227647 – volume: 123 start-page: 070506 year: 2019 ident: 2023061716571839400_c25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.070506 – volume: 108 start-page: 243601 year: 2012 ident: 2023061716571839400_c22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.243601 – volume: 5 start-page: 031305 year: 2018 ident: 2023061716571839400_c53 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5027122 – volume: 70 start-page: 053818 year: 2004 ident: 2023061716571839400_c46 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.053818 – volume: 429 start-page: 123 year: 2006 ident: 2023061716571839400_c9 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.03.005 – volume: 37 start-page: 3270 year: 2012 ident: 2023061716571839400_c43 publication-title: Opt. Lett. doi: 10.1364/OL.37.003270 – volume: 8 start-page: 234 year: 2014 ident: 2023061716571839400_c20 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.355 – volume: 424 start-page: 810 year: 2003 ident: 2023061716571839400_c26 publication-title: Nature doi: 10.1038/nature01935 – volume: 390 start-page: 589 year: 1997 ident: 2023061716571839400_c2 publication-title: Nature doi: 10.1038/37562 – volume: 82 start-page: 4611 year: 1999 ident: 2023061716571839400_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.4611 |
SSID | ssj0005233 |
Score | 2.4908621 |
Snippet | We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Angular momentum Applied physics Electrons Four-wave mixing Gaussian beams (optics) Interference Phase modulation Quantum wells |
Title | Spatially dependent four-wave mixing in semiconductor quantum wells |
URI | http://dx.doi.org/10.1063/1.5121275 https://www.proquest.com/docview/2307855467 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgEwIeEAwQhYEi4AEpyojjNLEfx9hUTd1AopW6p8hOHKlSl0xtytdfz11tJ6lUTcBLlFrOh-5-Pf98uQ9C3hdpiu78YaBVrINYDcNAqJAHspQxywslRYT5zheXyWgan8-GM9fv3maXNOoo_70zr-R_tApjoFfMkv0HzbY3hQE4B_3CETQMx7_SMfYThqcsfvmul23jl3Bh8AN7Cl3Pf9qElRVGwNcVlnatl5hHCQvNtY9uu1WfnDpGarwdK3-xSfVpSXfrW75al9oueOgyna_983n3-8pUJRjV3dAndJmYK_teBirQPEe9iA33-WgrhOGreZ0t-8qCRNgSstqY1DBFT6i1ss7mmhxOB650pzEH9oR-hSPgJFiGvlux3Ff6yy_Z2XQ8zians8ldsh_BTgFM3f7x54vxt16cD2OubSK-misvlbCP7a23SUm307gPNMRERPRIx-QxeWR3C96xUf0TckdXB-Rhr4bkAblnxfOUnLRw8Fo4eC0cPAMHb155W3DwLBy8DRyekenZ6eRkFNgeGUHOorQJBBuWHKviS1GmhaaqiCOdCyY0WGZFYy1VyrkOpZSF5ImktOBhWjIuqcwlkNXnZK-qK_2CeJwluQwLqnPF4kjlPBQqjyjjGHAquBqQD05ImRML9jFZZJtAhoRlNLPyHJC37dQbUzVl16RDJ-nM_qlWGeYlbCIn0wF510r_tpvsmPW9XnYzspuifHn7o16RBx3mD8les1zr18A1G_XGoukPRseB3w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+dependent+four-wave+mixing+in+semiconductor+quantum+wells&rft.jtitle=Applied+physics+letters&rft.au=Zhang%2C+Yufeng&rft.au=Qiu+Jing&rft.au=Yin%2C+Hong&rft.au=Benli%2C+Yu&rft.date=2019-10-21&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=115&rft.issue=17&rft_id=info:doi/10.1063%2F1.5121275&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |