Spatially dependent four-wave mixing in semiconductor quantum wells

We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 115; no. 17
Main Authors Zhang, Yufeng, Wang, Zhiping, Qiu, Jing, Hong, Yin, Yu, Benli
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a scheme to generate spatially dependent four-wave mixing (FWM) in an asymmetric semiconductor three-coupled-quantum-well nanostructure. By adjusting the detuning of the control field, one can effectively manipulate the FWM output field. Specifically, the vortex phase of the FWM field can be modulated. The detailed explanations based on the dispersion relation are given, which are in good agreement with our results. Furthermore, we perform the interference between the FWM field and the same-frequency Gaussian beam. Our results show that the interference patterns can also be modulated via the detuning of the control field, which may provide a way to observe helical phase modulation via the intensity measurement. This work may be useful for investigating the nonlinear optical phenomena based on orbital angular momentum light.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0003-6951
1077-3118
DOI:10.1063/1.5121275