Evaluating Trade-Offs in Ecosystem Services for Blue–Green–Grey Infrastructure Planning
The effectiveness and feasibility of urban planning are significantly influenced by the supply capacity and net value of ecosystem services offered by blue–green–grey infrastructure. This study used a cost–benefit analysis (CBA) to ascertain and contrast the ecological net present value (NPV) of the...
Saved in:
Published in | Sustainability Vol. 16; no. 1; p. 203 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The effectiveness and feasibility of urban planning are significantly influenced by the supply capacity and net value of ecosystem services offered by blue–green–grey infrastructure. This study used a cost–benefit analysis (CBA) to ascertain and contrast the ecological net present value (NPV) of the blue–green–grey infrastructure in three distinct functional areas (a park, a square, and a residential district) under 12 scenarios during the period characterized by representative summer temperature, which we refer to as “warm periods”. Our findings suggest varied optimal scenarios for the three functional areas. For the park, the most beneficial scenario involved an integrated approach with a 5% increase in grey infrastructure and a 5% replacement of green infrastructure with grey. This scenario yielded an NPV of 7.31 USD/m2 in a short-term life span (25 years) and 11.59 USD/m2 in a long-term life span (150 years). In the case of the square, the introduction of an additional 5% of blue infrastructure led to the highest NPV of ecological benefits, resulting in gains of 1.49 USD/m2 for a short-term life span and 2.18 USD/m2 for a long-term life span. For the residential district, the scenario where 5% of green infrastructure was replaced with blue infrastructure resulted in the highest NPV across all scenarios, with values of 8.02 USD/m2 and 10.65 USD/m2 for a short- and long-term life span, respectively. Generally, the most beneficial scenario yielded greater benefits over the long term compared with short-term projects. By quantifying the ecological benefits of different blue–green–grey infrastructure combinations, our research provides theoretical support for optimizing both the ecological and economic value of urban infrastructures. This study could benefit academics, practitioners, and policymakers in urban planning in optimizing the allocation of the blue–green–grey infrastructure. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16010203 |