Spiropyran-functionalized photochromic nylon webbings for long-term ultraviolet light sensing
Webbing structures are extensively employed in engineering systems as load-bearing components. In a field setting, webbings are frequently subject to extended ultraviolet (UV) light irradiation, which can affect their integrity and reduce their mechanical strength. Despite technological advancements...
Saved in:
Published in | Journal of applied physics Vol. 132; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Webbing structures are extensively employed in engineering systems as load-bearing components. In a field setting, webbings are frequently subject to extended ultraviolet (UV) light irradiation, which can affect their integrity and reduce their mechanical strength. Despite technological advancements in structural health monitoring, long-term UV sensing techniques for webbings remain under-developed. To fill this gap, we propose a photochromic nylon webbing that demonstrates color variation in response to extended UV exposure. The webbing offers a rich, yet controlled, color variation over multiple time scales that is conducive to UV sensing. A mathematical model grounded in photochemistry is developed to interpret experimental observations, unveiling the photochromic phenomenon as a multi-step, multi-timescale photochemical process involving several chemical species. The model captures the evolution of the coexisting species through a system of nonlinear, coupled ordinary differential equations, offering the basis for the inference of the webbing’s color. The proposed photochromic webbing and the photochemistry-based mathematical model could inform future designs of UV-sensitive structures that maintain sensitivity under weeks of continuous sunlight UV exposure. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0093641 |