Three-Dimensional Human Body Model Acquisition from Multiple Views

We present a novel approach to the three-dimensional human body model acquisition from three mutually orthogonal views. Our technique is based on the spatiotemporal analysis of the deforming apparent contour of a human moving according to a protocol of movements. For generality and robustness our te...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 30; no. 3; pp. 191 - 218
Main Authors Kakadiaris, Ioannis A., Metaxas, Dimitri
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.12.1998
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a novel approach to the three-dimensional human body model acquisition from three mutually orthogonal views. Our technique is based on the spatiotemporal analysis of the deforming apparent contour of a human moving according to a protocol of movements. For generality and robustness our technique does not use a prior model of the human body and a prior body part segmentation is not assumed. Therefore, our technique applies to humans of any anthropometric dimension. To parameterize and segment over time a deforming apparent contour, we introduce a new shape representation technique based on primitive composition. The composed deformable model allows us to represent large local deformations and their evolution in a compact and intuitive way. In addition, this representation allows us to hypothesize an underlying part structure and test this hypothesis against the relative motion (due to forces exerted from the image data) of the defining primitives of the composed model. Furthermore, we develop a Human Body Part Decomposition Algorithm (HBPDA) that recovers all the body parts of a subject by monitoring the changes over time to the shape of the deforming silhouette. In addition, we modularize the process of simultaneous two-dimensional part determination and shape estimation by employing the Supervisory Control Theory of Discrete Event Systems. Finally, we present a novel algorithm which selectively integrates the (segmented by the HBPDA) apparent contours from three mutually orthogonal viewpoints to obtain a three-dimensional model of the subject's body parts. The effectiveness of the approach is demonstrated through a series of experiments where a subject performs a set of movements according to a protocol that reveals the structure of the human body.[PUBLICATION ABSTRACT]
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0920-5691
1573-1405
DOI:10.1023/A:1008071332753