Natural plant stems modelling in a three-point bending test

The paper presents an approach to natural plant stems numerical modelling in a three-point bending test. Introduced subject was connected with elaborating more efficient systems for harvesting energetic plants. There were modelled, and laboratory tested two types of stems – sida hermaphrodita and mi...

Full description

Saved in:
Bibliographic Details
Published inMATEC web of conferences Vol. 252; p. 7001
Main Authors Kawecki, Bartosz, Podgórski, Jerzy, Głowacka, Aleksandra
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper presents an approach to natural plant stems numerical modelling in a three-point bending test. Introduced subject was connected with elaborating more efficient systems for harvesting energetic plants. There were modelled, and laboratory tested two types of stems – sida hermaphrodita and miscanthus giganteus. Course of proceedings for obtaining natural cross-sectional dimensions with graphical data processing was described in detail. Basing on dozens of stems slices from random parts of plants, three different cross-section approximations were proposed and computationally implemented – a circular pipe, an elliptical pipe (symmetrical cross-section) and a sine-cosine series pipe (asymmetrical cross-section). Analytical formulas for calculating a cross-sectional area and moments of inertia for each approximation were given. Basic material parameters as an elastic modulus and yielding stress was obtained from simply supported beam theory and laboratory force – the deflexion relation. FEM models were created in Simulia Abaqus software using C3D20R elements. Preliminary approach to modelling damage with perfect plasticity was done basing on several samples bended to failure in laboratory tests. Conclusions for future work with numerical modelling natural plant stems were drawn.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201925207001