Overstable rotating convection in the presence of a vertical magnetic field
Recently, Banerjee et al. [Phys. Rev. E 102, 013107 (2020)] investigated overstable rotating convection in the presence of an external horizontal magnetic field and reported a rich bifurcation structure near the onset. However, the bifurcation structure near the onset of overstable rotating convecti...
Saved in:
Published in | Physics of fluids (1994) Vol. 33; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recently, Banerjee et al. [Phys. Rev. E 102, 013107 (2020)] investigated overstable rotating convection in the presence of an external horizontal magnetic field and reported a rich bifurcation structure near the onset. However, the bifurcation structure near the onset of overstable rotating convection in the presence of a vertical magnetic field has not been explored yet. We address the issue here by performing three dimensional direct numerical simulations and low-dimensional modeling of the system using a Rayleigh–Bénard convection model. The control parameters, namely, the Taylor number (Ta), the Chandrasekhar number (Q), and the Prandtl number (Pr) are varied in the ranges
750
≤
Ta
≤
10
6
,
0
<
Q
≤
10
3, and
0
<
Pr
≤
0.5. Our investigation reveals two qualitatively different onset scenarios including bistability (coexistence of subcritical and supercritical convections). Analysis of the low-dimensional model shows that a supercritical Hopf bifurcation is responsible for the supercritical onset and a subcritical pitchfork bifurcation is responsible for the subcritical onset. It is also observed that the appearance of a subcritical convection at the onset has strong dependence on all three control parameters: Ta, Q, and Pr. The scenario of a subcritical convection is found to disappear as Pr is increased for fixed Ta and Q. However, most striking findings of the investigation are that the increment in Ta for fixed Q and Pr opposes the subcritical convection, whereas the increment in Q for fixed Ta and Pr favors it. This is in sharp contrast with the earlier results reported in rotating magnetoconvection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0035555 |