Assessment of Greenhouse Gas Emissions and Energetic Potential from Solid Waste Landfills in Jordan: A Comparative Modelling Analysis

Landfilling of solid waste has been and continues to be among the most common practices of solid waste disposal. This is particularly true for Jordan, where approximately 3.3 million tons of municipal solid waste (MSW) is annually generated, with 90% of the generated amount disposed into landfills....

Full description

Saved in:
Bibliographic Details
Published inWater (Basel) Vol. 15; no. 1; p. 155
Main Authors Abu-Qdais, Hani A., Al-Ghazawi, Ziad, Awawdeh, Abdallah
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Landfilling of solid waste has been and continues to be among the most common practices of solid waste disposal. This is particularly true for Jordan, where approximately 3.3 million tons of municipal solid waste (MSW) is annually generated, with 90% of the generated amount disposed into landfills. The main objective of this study is to estimate the quantities of landfill gas (LFG) generated from the solid waste disposal and its potential as a source of clean energy in Jordan using four different models, namely, GasSim 2.5, LandGEM, Afvalzorg, and Mexico Landfill Gas Model V2 (MLFGM V2). Furthermore, the greenhouse gas (GHG) mitigation potential of LFG projects was estimated. Currently, there are 18 active landfills that are distributed across the country. Based on screening criteria, the landfills were grouped into three categories: five landfills were considered for energy production, four were strong candidates for LFG collection and flaring, while the remaining nine landfills do not receive enough waste to be considered for either energy recovery or flaring. The total amount of LFG emissions was found to be 1.6 billion M3 of LFG, while the landfill energetic potential of the recovered LFG was estimated to be 34.8 MW. On the other hand, GHG mitigation potential was assessed between the years 2020 and 2030, which was found to be 18 million ton CO2 eq. The proposed LFG energy recovery projects will lead to increased biogas contribution to Jordan’s local renewable energy mix from a current level of 1% to 6%.
ISSN:2073-4441
2073-4441
DOI:10.3390/w15010155