Host Plant and Biotype Density Interactions - Their Role in the Establishment of the Invasive B Biotype of Bemisia tabaci

Bemisia tabaciis a complex of closely related genetic types of whiteflies, few of which are invasive. One of these, B biotype, has proven to be particularly adapted to invading new areas, but the underlying reasons as to why it has a well-developed capacity to invade is not known. To develop an unde...

Full description

Saved in:
Bibliographic Details
Published inBiological invasions Vol. 8; no. 2; pp. 287 - 294
Main Authors De Barro, P.J, Bourne, A, Khan, S.A, Brancatini, V.A.L
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.03.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bemisia tabaciis a complex of closely related genetic types of whiteflies, few of which are invasive. One of these, B biotype, has proven to be particularly adapted to invading new areas, but the underlying reasons as to why it has a well-developed capacity to invade is not known. To develop an understanding of factors that may be contributing to B's invasive capacity, inter-biotype mating interactions and host plant suitability for the exotic B (B. tabaci Mediterranean/Asia Minor/Africa) and the indigenous Australian (AN) biotype (B. tabaci Australia) were examined. The results suggest that when confined to a mutually acceptable host, B cannot establish when the ratio of AN : B exceeds 20 : 1. However, when simultaneously provided with a host that only it prefers, B is able to establish even at 50 : 1 (AN : B). Further, when both biotypes occur together the number of progeny per female increases (relative to the number produced when only one biotype is present). The response is observed for both biotypes, but is considerably greater in the case of B. In addition, B performs better in the presence of the AN biotype B. tabaci Australia while AN perform worse in coexistence with B, but only if the demographics allow B to mate without significant interference. This leads to the prediction that B will invade in circumstances where its unique hosts are of sufficient number to escape the full negative impact of inter-biotype mating interactions and reduced competitiveness in terms of reproductive rate, while exposing the indigenous biotype to the full effects of the interaction.[PUBLICATION ABSTRACT]
Bibliography:http://dx.doi.org/10.1007/s10530-005-1261-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1387-3547
1573-1464
DOI:10.1007/s10530-005-1261-6