Total three-dimensional imaging of phase objects using defocusing microscopy: Application to red blood cells
We introduce Defocusing Microscopy (DM), a bright-field optical microscopy technique able to perform total three-dimensional (3D) imaging of transparent objects. By total 3D imaging, we mean the determination of the actual shapes of the upper and lower surfaces of a phase object. We propose a method...
Saved in:
Published in | Applied physics letters Vol. 104; no. 25 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
23.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce Defocusing Microscopy (DM), a bright-field optical microscopy technique able to perform total three-dimensional (3D) imaging of transparent objects. By total 3D imaging, we mean the determination of the actual shapes of the upper and lower surfaces of a phase object. We propose a methodology using DM and apply it to red blood cells subject to different osmolality conditions: hypotonic, isotonic, and hypertonic solutions. For each situation, the shapes of the upper and lower cell surface-membranes (lipid bilayer/cytoskeleton) are completely recovered, displaying the deformation of red blood cell (RBC) surfaces due to adhesion on the glass-substrate. The axial resolution of our technique allowed us to image surface-membranes separated by distances as small as 300 nm. Finally, we determine the volume, surface area, sphericity index, and RBC refractive index for each osmotic condition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4884420 |