Drawing and Hydrophobicity-patterning Long Polydimethylsiloxane Silicone Filaments

Polydimethylsiloxane (PDMS) silicone is a versatile polymer that cannot readily be formed into long filaments. Traditional spinning methods fail because PDMS does not exhibit long-range fluidity at melting. We introduce an improved method to produce filaments of PDMS by a stepped temperature profile...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualized experiments no. 143
Main Authors Snell, Katherine, Lopez, Isabelle, Louie, Brandon, Kiessling, Roxanna, Sanii, Babak
Format Journal Article
LanguageEnglish
Published United States 07.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polydimethylsiloxane (PDMS) silicone is a versatile polymer that cannot readily be formed into long filaments. Traditional spinning methods fail because PDMS does not exhibit long-range fluidity at melting. We introduce an improved method to produce filaments of PDMS by a stepped temperature profile of the polymer as it cross-links from a fluid to an elastomer. By monitoring its warm-temperature viscosity, we estimate a window of time when its material properties are amendable to drawing into long filaments. The filaments pass through a high-temperature tube oven, curing them sufficiently to be harvested. These filaments are on the order of hundreds of micrometers in diameter and tens of centimeters in length, and even longer and thinner filaments are possible. These filaments retain many of the material properties of bulk PDMS, including switchable hydrophobicity. We demonstrate this capability with an automated corona-discharge patterning method. These patternable PDMS silicone filaments have applications in silicone weavings, gas-permeable sensor components, and model microscale foldamers.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1940-087X
1940-087X
DOI:10.3791/58826