Mn12Ac inhibits the migration, invasion and epithelial-mesenchymal transition of lung cancer cells by downregulating the Wnt/β-catenin and PI3K/AKT signaling pathways

Lung cancer is the leading cause of global cancer-associated mortality, therefore it is important to reveal the molecular mechanisms of lung cancer progression and to develop novel therapeutic targets. The results of the present study identified that manganese-12 acetate (Mn12Ac) was able to signifi...

Full description

Saved in:
Bibliographic Details
Published inOncology letters Vol. 16; no. 3; pp. 3943 - 3948
Main Authors Chen, Zihao, He, Jiangbo, Xing, Xiqian, Li, Ping, Zhang, Wei, Tong, Zhuxiu, Jing, Xiaojie, Li, Licheng, Liu, Dian, Wu, Qiong, Ju, Hongping
Format Journal Article
LanguageEnglish
Published Greece Spandidos Publications UK Ltd 01.09.2018
D.A. Spandidos
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lung cancer is the leading cause of global cancer-associated mortality, therefore it is important to reveal the molecular mechanisms of lung cancer progression and to develop novel therapeutic targets. The results of the present study identified that manganese-12 acetate (Mn12Ac) was able to significantly inhibit the migration and invasion of A549 cells. Western blotting demonstrated that treatment with Mn12Ac was able to upregulate E-cadherin, and downregulate N-cadherin and vimentin. It was also identified by a quantitative polymerase chain reaction analysis that Mn12Ac was able to reduce the mRNA expression levels of EMT-associated transcription factors Snail, Slug, Twist-related protein 1 and zinc finger E-box-binding homeobox 1. It was also demonstrated that Mn12Ac was able to reduce the expression levels of Wnt and β-catenin proteins, and suppress the phosphorylation of phosphoinositide 3-kinase (PI3K) and AKT in A549 cells. Notably, it was revealed that Mn12Ac was able to decrease the mRNA and protein expression levels of programmed death ligand-1. Taken together, the results suggested that Mn12Ac is able to inhibit cell migration, invasion and EMT in lung cancer cells by regulating the Wnt/β-catenin and PI3K/AKT signaling pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1792-1074
1792-1082
DOI:10.3892/ol.2018.9136