Towards data‐driven stochastic predictive control
Summary Data‐driven predictive control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, little has been done on data‐driven stochastic control. In this paper, we propose a data‐driven stochastic predictive...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 35; no. 7; pp. 2588 - 2610 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
10.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-8923 1099-1239 |
DOI | 10.1002/rnc.6812 |
Cover
Abstract | Summary
Data‐driven predictive control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, little has been done on data‐driven stochastic control. In this paper, we propose a data‐driven stochastic predictive control scheme for LTI systems subject to possibly unbounded additive process disturbances. Based on a stochastic extension of the fundamental lemma and leveraging polynomial chaos expansions, we construct a data‐driven surrogate optimal control problem (OCP). Moreover, combined with an online selection strategy of the initial condition of the OCP, we provide sufficient conditions for recursive feasibility and for stability of the proposed data‐driven predictive control scheme. Finally, two numerical examples illustrate the efficacy and closed‐loop properties of the proposed scheme for process disturbances governed by different distributions. |
---|---|
AbstractList | Data‐driven predictive control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, little has been done on data‐driven stochastic control. In this paper, we propose a data‐driven stochastic predictive control scheme for LTI systems subject to possibly unbounded additive process disturbances. Based on a stochastic extension of the fundamental lemma and leveraging polynomial chaos expansions, we construct a data‐driven surrogate optimal control problem (OCP). Moreover, combined with an online selection strategy of the initial condition of the OCP, we provide sufficient conditions for recursive feasibility and for stability of the proposed data‐driven predictive control scheme. Finally, two numerical examples illustrate the efficacy and closed‐loop properties of the proposed scheme for process disturbances governed by different distributions. Summary Data‐driven predictive control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement noise. However, little has been done on data‐driven stochastic control. In this paper, we propose a data‐driven stochastic predictive control scheme for LTI systems subject to possibly unbounded additive process disturbances. Based on a stochastic extension of the fundamental lemma and leveraging polynomial chaos expansions, we construct a data‐driven surrogate optimal control problem (OCP). Moreover, combined with an online selection strategy of the initial condition of the OCP, we provide sufficient conditions for recursive feasibility and for stability of the proposed data‐driven predictive control scheme. Finally, two numerical examples illustrate the efficacy and closed‐loop properties of the proposed scheme for process disturbances governed by different distributions. |
Author | Faulwasser, Timm Ou, Ruchuan Pan, Guanru |
Author_xml | – sequence: 1 givenname: Guanru orcidid: 0000-0002-9667-5816 surname: Pan fullname: Pan, Guanru organization: TU Dortmund – sequence: 2 givenname: Ruchuan orcidid: 0000-0002-8530-2379 surname: Ou fullname: Ou, Ruchuan organization: TU Dortmund – sequence: 3 givenname: Timm orcidid: 0000-0002-6892-7406 surname: Faulwasser fullname: Faulwasser, Timm email: timm.faulwasser@ieee.org organization: TU Dortmund |
BookMark | eNp1kM1KxDAUhYOM4Mwo-AgFN25a89s0Sxn8g0FBxnXIJClmqE1NMg6z8xF8Rp_E1roSXd3Lvd85l3tmYNL61gJwimCBIMQXodVFWSF8AKYICpEjTMRk6KnIK4HJEZjFuIGw32E6BWTldyqYmBmV1Of7hwnuzbZZTF4_q5iczrpgjdOpH2fatyn45hgc1qqJ9uSnzsHT9dVqcZsvH27uFpfLXBPMcU4p5xgpSgzBGOFKKCPWa6UN4qwWhHPFBGaGl4xSJpjgoiQWa1ORulaIcjIHZ6NvF_zr1sYkN34b2v6kJKiiFaMlKXvqfKR08DEGW8suuBcV9hJBOUQi-0jkEEmPFr9Q7ZJKbnhLueYvQT4Kdq6x-3-N5eP94pv_AghrcxQ |
CitedBy_id | crossref_primary_10_1016_j_arcontrol_2023_03_005 crossref_primary_10_1109_OJCSYS_2023_3291596 crossref_primary_10_1002_rnc_7930 crossref_primary_10_1016_j_arcontrol_2023_100914 |
Cites_doi | 10.1109/TAC.2009.2017970 10.1137/20M1315774 10.1109/TAC.2010.2086553 10.1016/j.automatica.2010.06.034 10.1109/LCSYS.2022.3161054 10.1109/LCSYS.2020.3040851 10.1016/j.jprocont.2016.03.005 10.23919/ECC.2019.8795639 10.1016/j.ifacol.2021.08.294 10.1109/CDC.2012.6425919 10.1109/LCSYS.2021.3073860 10.1007/s10957-006-9084-x 10.2307/2371268 10.1109/TCST.2022.3224330 10.1137/S1064827501387826 10.1109/MCS.2016.2602087 10.23919/ECC.2009.7074737 10.1016/j.compchemeng.2017.10.026 10.1109/LCSYS.2022.3185841 10.1016/S1474-6670(17)61205-9 10.1109/ACC.2014.6858851 10.1016/j.sysconle.2004.09.003 10.1109/LCSYS.2017.2778138 10.1109/TAC.2022.3140275 10.1109/CDC.2011.6161250 10.1109/TAC.2019.2959924 10.2514/6.2006-896 10.1109/ECCE44975.2020.9235958 10.1109/ASCC.2015.7244723 10.1109/MCS.2013.2270410 10.1109/TAC.2021.3097706 10.1002/rnc.3912 10.1016/j.probengmech.2003.11.017 10.1016/j.automatica.2015.02.039 10.1109/TAC.2022.3232442 10.1109/CDC40024.2019.9029522 10.1109/CDC.2013.6761117 10.1016/j.automatica.2012.12.003 10.1016/j.automatica.2022.110708 10.1515/auto-2021-0024 10.1109/CDC45484.2021.9683709 10.1109/TAC.2020.3000182 10.1016/j.arcontrol.2023.03.005 10.1007/978-3-319-23395-6 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.6812 |
DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 2610 |
ExternalDocumentID | 10_1002_rnc_6812 RNC6812 |
Genre | article |
GrantInformation_xml | – fundername: German Federal Ministry of Education and Research (BMBF) funderid: 16KISK038 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGYGG CITATION LH4 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D TUS |
ID | FETCH-LOGICAL-c3272-447721a43d3221289ad9bbacd175f9377a5925d7654459597963e2cd83ffa1473 |
IEDL.DBID | 24P |
ISSN | 1049-8923 |
IngestDate | Sat Aug 23 13:25:59 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 05:13:43 EDT 2025 Wed Apr 02 09:51:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3272-447721a43d3221289ad9bbacd175f9377a5925d7654459597963e2cd83ffa1473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6892-7406 0000-0002-8530-2379 0000-0002-9667-5816 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.6812 |
PQID | 3184854636 |
PQPubID | 1026344 |
PageCount | 23 |
ParticipantIDs | proquest_journals_3184854636 crossref_primary_10_1002_rnc_6812 crossref_citationtrail_10_1002_rnc_6812 wiley_primary_10_1002_rnc_6812_RNC6812 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 May 2025 |
PublicationDateYYYYMMDD | 2025-05-10 |
PublicationDate_xml | – month: 05 year: 2025 text: 10 May 2025 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 69 2010; 56 2021; 9 2013; 49 2012 2011 2023; 7 2015; 55 2022; 67 2009 1998 2006; 130 2023; 147 1992 2006; 896 1938 2016; 36 2020; 5 2021; 54 2018; 2 2009; 54 2010; 46 2013; 33 2023 2022 2004; 19 2021 2019; 65 2020 2022; 6 1984; 17 2015; 63 2002; 24 2018; 114 2019 2005; 54 2019; 29 2015 2020; 66 2014 2013 2016; 44 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_51_1 Koekoek R (e_1_2_10_39_1) 1998 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 Rawlings JB (e_1_2_10_34_1) 2020 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Fristedt BE (e_1_2_10_30_1) 2013 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – year: 2011 – start-page: 1355 year: 2023 end-page: 1365 article-title: Data‐driven predictive control with improved performance using segmented trajectories publication-title: IEEE Trans Control Syst Technol – volume: 46 start-page: 1719 issue: 10 year: 2010 end-page: 1724 article-title: Explicit use of probabilistic distributions in linear predictive control publication-title: Automatica – volume: 67 start-page: 3289 issue: 7 year: 2022 end-page: 3304 article-title: Distributionally robust chance constrained data‐enabled predictive control publication-title: IEEE Trans Automat Contr – year: 2009 – volume: 19 start-page: 65 issue: 1‐2 year: 2004 end-page: 80 article-title: On the accuracy of the polynomial chaos approximation publication-title: Probab Eng Mech – year: 2022 article-title: On a stochastic fundamental lemma and its use for data‐driven optimal control publication-title: IEEE Trans Automat Contr – volume: 69 start-page: 608 issue: 7 year: 2021 end-page: 618 article-title: Data‐driven model predictive control: closed‐loop guarantees and experimental results publication-title: Automatisierungstechnik – volume: 6 start-page: 2443 year: 2022 end-page: 2448 article-title: Willems' fundamental lemma for linear descriptor systems and its use for data‐driven output‐feedback MPC publication-title: IEEE Control Syst Lett – volume: 63 year: 2015 – volume: 130 start-page: 1 issue: 1 year: 2006 end-page: 22 article-title: On distributionally robust chance‐constrained linear programs publication-title: J Optim Theory Appl – volume: 24 start-page: 619 issue: 2 year: 2002 end-page: 644 article-title: The Wiener–Askey polynomial chaos for stochastic differential equations publication-title: SIAM J Sci Comput – volume: 7 start-page: 313 year: 2023 end-page: 318 article-title: Data‐driven multiple shooting for stochastic optimal control publication-title: IEEE Control Syst Lett – year: 2021 – volume: 55 start-page: 140 year: 2015 end-page: 149 article-title: An approach to output‐feedback MPC of stochastic linear discrete‐time systems publication-title: Automatica – volume: 54 start-page: 325 issue: 4 year: 2005 end-page: 329 article-title: A note on persistency of excitation publication-title: Syst Control Lett – volume: 54 start-page: 516 issue: 3 year: 2021 end-page: 521 article-title: A simulation study on turnpikes in stochastic LQ optimal control publication-title: IFAC‐PapersOnLine – volume: 9 start-page: 593 issue: 2 year: 2021 end-page: 649 article-title: Sparse polynomial chaos expansions: literature survey and benchmark publication-title: SIAM/ASA J Uncertain Quant – volume: 49 start-page: 725 issue: 3 year: 2013 end-page: 734 article-title: Economic receding horizon control without terminal constraints publication-title: Automatica – volume: 54 start-page: 1626 issue: 7 year: 2009 end-page: 1632 article-title: Probabilistic constrained MPC for multiplicative and additive stochastic uncertainty publication-title: IEEE Trans Automat Contr – year: 1992 – year: 2014 – volume: 114 start-page: 158 year: 2018 end-page: 170 article-title: Stochastic model predictive control–how does it work? publication-title: Comput Chem Eng – year: 1998 – year: 2012 – volume: 56 start-page: 194 issue: 1 year: 2010 end-page: 200 article-title: Stochastic tubes in model predictive control with probabilistic constraints publication-title: IEEE Trans Automat Contr – volume: 17 start-page: 1603 issue: 2 year: 1984 end-page: 1608 article-title: A multiple shooting algorithm for direct solution of optimal control problems publication-title: IFAC Proc Vol – volume: 36 start-page: 30 issue: 6 year: 2016 end-page: 44 article-title: Stochastic model predictive control: an overview and perspectives for future research publication-title: IEEE Control Syst Mag – volume: 44 start-page: 53 year: 2016 end-page: 67 article-title: Stochastic linear model predictive control with chance constraints–a review publication-title: J Process Control – volume: 66 start-page: 1702 issue: 4 year: 2020 end-page: 1717 article-title: Data‐driven model predictive control with stability and robustness guarantees publication-title: IEEE Trans Automat Contr – volume: 2 start-page: 169 issue: 1 year: 2018 end-page: 174 article-title: Comments on quantifying truncation errors for polynomial chaos expansions publication-title: IEEE Control Syst Lett – start-page: 897 year: 1938 end-page: 936 article-title: The homogeneous chaos publication-title: Am J Math – volume: 65 start-page: 909 issue: 3 year: 2019 end-page: 924 article-title: Formulas for data‐driven control: stabilization, optimality, and robustness publication-title: IEEE Trans Automat Contr – volume: 147 year: 2023 article-title: NMPC in active subspaces: dimensionality reduction with recursive feasibility guarantees publication-title: Automatica – year: 2022 – year: 2020 – volume: 6 start-page: 319 year: 2022 end-page: 324 article-title: Beyond persistent excitation: online experiment design for data‐driven modeling and control publication-title: IEEE Control Syst Lett – year: 2023 – volume: 29 start-page: 4987 issue: 15 year: 2019 end-page: 5001 article-title: Stochastic model predictive control without terminal constraints publication-title: Int J Robust Nonlinear Control – volume: 33 start-page: 58 issue: 5 year: 2013 end-page: 67 article-title: Wiener's polynomial chaos for the analysis and control of nonlinear dynamical systems with probabilistic uncertainties [historical perspectives] publication-title: IEEE Control Syst Mag – start-page: 470 year: 2022 end-page: 477 article-title: A polynomial chaos approach to robust static output‐feedback control with bounded truncation error publication-title: IEEE Trans Automat Contr – volume: 5 start-page: 1519 issue: 5 year: 2020 end-page: 1524 article-title: On moment estimation from polynomial chaos expansion models publication-title: IEEE Control Syst Lett – volume: 896 year: 2006 – year: 2019 – year: 2015 – year: 2013 – ident: e_1_2_10_26_1 doi: 10.1109/TAC.2009.2017970 – ident: e_1_2_10_53_1 doi: 10.1137/20M1315774 – ident: e_1_2_10_23_1 doi: 10.1109/TAC.2010.2086553 – ident: e_1_2_10_24_1 doi: 10.1016/j.automatica.2010.06.034 – ident: e_1_2_10_12_1 doi: 10.1109/LCSYS.2022.3161054 – ident: e_1_2_10_22_1 doi: 10.1109/LCSYS.2020.3040851 – ident: e_1_2_10_15_1 doi: 10.1016/j.jprocont.2016.03.005 – ident: e_1_2_10_4_1 doi: 10.23919/ECC.2019.8795639 – ident: e_1_2_10_42_1 doi: 10.1016/j.ifacol.2021.08.294 – ident: e_1_2_10_18_1 doi: 10.1109/CDC.2012.6425919 – ident: e_1_2_10_52_1 – ident: e_1_2_10_49_1 doi: 10.1109/LCSYS.2021.3073860 – volume-title: A Modern Approach to Probability Theory year: 2013 ident: e_1_2_10_30_1 – ident: e_1_2_10_43_1 doi: 10.1007/s10957-006-9084-x – ident: e_1_2_10_36_1 doi: 10.2307/2371268 – ident: e_1_2_10_48_1 doi: 10.1109/TCST.2022.3224330 – ident: e_1_2_10_20_1 – ident: e_1_2_10_40_1 doi: 10.1137/S1064827501387826 – ident: e_1_2_10_14_1 doi: 10.1109/MCS.2016.2602087 – ident: e_1_2_10_31_1 doi: 10.23919/ECC.2009.7074737 – ident: e_1_2_10_29_1 – ident: e_1_2_10_16_1 doi: 10.1016/j.compchemeng.2017.10.026 – ident: e_1_2_10_46_1 doi: 10.1109/LCSYS.2022.3185841 – ident: e_1_2_10_47_1 doi: 10.1016/S1474-6670(17)61205-9 – ident: e_1_2_10_21_1 doi: 10.1109/ACC.2014.6858851 – ident: e_1_2_10_2_1 doi: 10.1016/j.sysconle.2004.09.003 – ident: e_1_2_10_38_1 doi: 10.1109/LCSYS.2017.2778138 – ident: e_1_2_10_44_1 doi: 10.1109/TAC.2022.3140275 – ident: e_1_2_10_25_1 doi: 10.1109/CDC.2011.6161250 – ident: e_1_2_10_3_1 doi: 10.1109/TAC.2019.2959924 – ident: e_1_2_10_41_1 doi: 10.2514/6.2006-896 – ident: e_1_2_10_11_1 doi: 10.1109/ECCE44975.2020.9235958 – ident: e_1_2_10_33_1 – ident: e_1_2_10_7_1 doi: 10.1109/ASCC.2015.7244723 – ident: e_1_2_10_19_1 doi: 10.1109/MCS.2013.2270410 – ident: e_1_2_10_13_1 doi: 10.1109/TAC.2021.3097706 – ident: e_1_2_10_32_1 – ident: e_1_2_10_35_1 doi: 10.1002/rnc.3912 – ident: e_1_2_10_37_1 doi: 10.1016/j.probengmech.2003.11.017 – ident: e_1_2_10_28_1 doi: 10.1016/j.automatica.2015.02.039 – ident: e_1_2_10_6_1 doi: 10.1109/TAC.2022.3232442 – volume-title: The Askey‐Scheme of Hypergeometric Orthogonal Polynomials and its q‐Analogue year: 1998 ident: e_1_2_10_39_1 – ident: e_1_2_10_8_1 doi: 10.1109/CDC40024.2019.9029522 – ident: e_1_2_10_27_1 doi: 10.1109/CDC.2013.6761117 – volume-title: Model Predictive Control: Theory, Computation, and Design year: 2020 ident: e_1_2_10_34_1 – ident: e_1_2_10_51_1 doi: 10.1016/j.automatica.2012.12.003 – ident: e_1_2_10_9_1 – ident: e_1_2_10_54_1 doi: 10.1016/j.automatica.2022.110708 – ident: e_1_2_10_10_1 doi: 10.1515/auto-2021-0024 – ident: e_1_2_10_50_1 doi: 10.1109/CDC45484.2021.9683709 – ident: e_1_2_10_5_1 doi: 10.1109/TAC.2020.3000182 – ident: e_1_2_10_45_1 doi: 10.1016/j.arcontrol.2023.03.005 – ident: e_1_2_10_17_1 doi: 10.1007/978-3-319-23395-6 |
SSID | ssj0009924 |
Score | 2.4563675 |
Snippet | Summary
Data‐driven predictive control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to... Data‐driven predictive control based on the fundamental lemma by Willems et al. is frequently considered for deterministic LTI systems subject to measurement... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2588 |
SubjectTerms | closed‐loop properties Control data (computers) Control systems data‐driven system representation Disturbances Noise measurement Optimal control polynomial chaos expansion Polynomials Predictive control stochastic model predictive control Stochastic processes |
Title | Towards data‐driven stochastic predictive control |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.6812 https://www.proquest.com/docview/3184854636 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMcHrRc9iE-sVokgelra7m6yyVGqpQgWKS30FvYVPEgtab37EfyMfhJn8mgVFLxkL7OXSWbmn2T2NwBXmel4n-mYeRlbJr0XzAijWGi8irxzXVVAkh6H0WAiH6bhtOqqpLMwJR9i9cGNIqPI1xTg2izaa2hojvFD8KxN2KKTtTS2gcunNXA3KQfaogJmMaqYGjzb4e16589StNaX31VqUWb6e7Bb6cPgtryh-7DhZwew840aeAhiXLS6LgLq7vx8_3A5ZawAVZx91oRdDuY5_X6hRBZUrehHMOnfj3sDVs0-YFZwxZmUKHu7WgqHEYc1JNEuMUZbdF6YoaRQOkx46FREMJ0E3wowkDy3LhZZprtSiWNozF5n_gQC4ZWyToQdr2OptTVEQPSGwDSoBiVvwk3thtRWYHCaT_GSlkhjnqLDUnJYEy5XlvMShvGLTav2ZFqFwyLFxCFjAu9HTbguvPvn_nQ07NF6-l_DM9jmNJO3IKq2oLHM3_w5CoWluSieCLzejfgXCYi6nQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMeHWg_qwbdYrbqC6Cl9bLKbXTxJtVRteygt9CAsSTaLoNTSx8WTH8HP6Ccxs4-2ioJ42ksCu5PM5J_s5DcAZ5GsaB0Jj2jmKcK0pkRSyYkjNXd1GFZ5DElqtd1Gj931nX4OLrO7MAkfYnbghp4Rx2t0cDyQLs-poSPjQEjPWoJlZnQG7ryuO3N2lO8nFW2NBCaekTEZebZil7OeX9eiucBclKnxOlPfgIfsDZP0kqfSdCJL6vUbvPGfn7AJ66n-tK6SCbMFOT3YhrUFKuEO0G6cSju2MHv04-09HGFEtIxKVI8Csc7WcIS_dzBQWmmq-y706jfdWoOktRWIoja3CWNGVlcFo6HxaLNG-SL0pRTKDI4TGcnChePbTshdhPX4ZtdhHFXbKvRoFIkq43QP8oOXgd4Hi2rOVUidihYeE0JJJCxqieAbozaZXYCLzMqBSsHjWP_iOUiQyXZgzBCgGQpwOms5TGAbP7QpZgMVpO42DkxgYh6C_d0CnMcW_7V_0GnX8Hnw14YnsNLotppB87Z9fwirNtb_jemtRchPRlN9ZETJRB7Hk-8TA4fdrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEMcHrSB6EJ9YrRpB9LS03d1kk6NUS32VIi30tuwreJBa0nr3I_gZ_STuJOlDUPCUy-5lkv_MP9nJbwAuUt1wLlUxcTw2hDvHiGZakFA7ETlrmyKHJD11o86A3w_DYdlVif_CFHyI-Qc3VEaer1HgY5vWF9DQzOsH4VmrsIZnfShKynsL4G5SDLT1DpjE3sXMwLMNWp_t_FmKFv5y2aXmZaa9DVulPwyuixu6AytutAubS9TAPWD9vNV1EmB359fHp80wYwXexZkXhdjlYJzh8QsmsqBsRd-HQfu23-qQcvYBMYwKSjj3trepOLNecb6GJMomWivjgxem3lIIFSY0tCJCmE7i3wq8kBw1NmZpqppcsAOojN5G7hAC5oQwloUNp2KulNFIQHQawTTeDXJahatZGKQpweA4n-JVFkhjKn3AJAasCufzleMChvHLmtoskrKUw0T6xMFjBO9HVbjMo_vnfvncbeH16L8Lz2C9d9OWj3fdh2PYoDieN4er1qAyzd7difcMU32aPxzf4JO8UA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+data%E2%80%90driven+stochastic+predictive+control&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Pan%2C+Guanru&rft.au=Ou%2C+Ruchuan&rft.au=Faulwasser%2C+Timm&rft.date=2025-05-10&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=35&rft.issue=7&rft.spage=2588&rft.epage=2610&rft_id=info:doi/10.1002%2Frnc.6812&rft.externalDBID=10.1002%252Frnc.6812&rft.externalDocID=RNC6812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |