A high performance and low-cost hole transporting layer for efficient and stable perovskite solar cells

Here we report a small molecule oxidant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) doped, low cost 2',7'-bis(bis(4-methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene] (FDT) hole transporting layer (HTL) for efficient mixed organic cati...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 19; no. 31; pp. 21033 - 21045
Main Authors Mahmud, Md Arafat, Elumalai, Naveen Kumar, Upama, Mushfika Baishakhi, Wang, Dian, Gonçales, Vinicius R, Wright, Matthew, Xu, Cheng, Haque, Faiazul, Uddin, Ashraf
Format Journal Article
LanguageEnglish
Published England 2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Here we report a small molecule oxidant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) doped, low cost 2',7'-bis(bis(4-methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene] (FDT) hole transporting layer (HTL) for efficient mixed organic cation based MA FA PbI (MA = methyl ammonium, FA = formamidinium) perovskite solar cells (PSCs), fabricated via a highly reproducible controlled nucleation assisted restricted volume solvent annealing method, having full temperature compatibility with flexible substrates. The optimized (1 wt%) F4TCNQ doped FDT HTL based devices (F-FDT devices) demonstrate simultaneous enhancement of photovoltaic performance and device stability as well as significant reduction in photo-current hysteresis, as compared to conventional bis(trifluoromethylsulfonyl)amine lithium (Li-TFSI) additive based FDT HTL devices (L-FDT devices). Adding to the merits, F-FDT PSCs exhibit about 75% higher device stability compared to conventional L-FDT devices during the course of three weeks. Mott-Schottky analysis and in-depth charge transport characterization were carried out using electrochemical impedance spectroscopy (EIS) of the fabricated devices to understand the superior performance of the F-FDT devices. In addition, detailed polaronic intensity characterization of the doped HTL films was performed via ultraviolet-visible near-infrared (UV-vis-NIR) spectroscopy to investigate the underlying mechanism. Mitigated photocurrent hysteresis in the F-FDT devices has also been examined in terms of the inherent electrode polarization phenomenon. Furthermore, the superior device stability of the F-FDT PSCs has been probed in terms of variation in electronic properties, surface wettability, crystallinity, and microstrain dislocation density, and a detailed picture of the underlying mechanism behind stability enhancement is presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9076
1463-9084
DOI:10.1039/c7cp03551a