Open-Circuit Fault Diagnosis and Fault-Tolerant Control for a Grid-Connected NPC Inverter

This paper presents an open-circuit fault detection method for a grid-connected neutral-point clamped (NPC) inverter system. Further, a fault-tolerant control method under an open-circuit fault in clamping diodes is proposed. Under the grid-connected condition, it is impossible to identify the locat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 31; no. 10; pp. 7234 - 7247
Main Authors Ui-Min Choi, June-Seok Lee, Blaabjerg, Frede, Kyo-Beum Lee
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents an open-circuit fault detection method for a grid-connected neutral-point clamped (NPC) inverter system. Further, a fault-tolerant control method under an open-circuit fault in clamping diodes is proposed. Under the grid-connected condition, it is impossible to identify the location of a faulty switch by the conventional methods which usually use the distortion of outputs because the distortion of the outputs is the same in some fault cases. The proposed fault detection method identifies the location of the faulty switch and the faulty clamping diode of the NPC inverter without any additional hardware or complex calculations. In the case of the clamping diode faults, the NPC inverter can transfer full rated power with sinusoidal currents by the proposed fault-tolerant control. The feasibility of the proposed fault detection and the fault-tolerant control methods for the grid-connected NPC inverter are verified by simulation and experimental results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2015.2510224