An Upper Bound on Conductors for Pairs

LetFbe a non-Archimedean local field. Letπbe a smooth irreducible complex representation ofGLm(F), andρbe a smooth irreducible complex representation ofGLn(F). Denote bya,b, andcthe exponents in the conductors ofπ,ρ, and the pair (π,ρ), respectively. IfFhas positive characteristic, the following upp...

Full description

Saved in:
Bibliographic Details
Published inJournal of number theory Vol. 65; no. 2; pp. 183 - 196
Main Authors Bushnell, C.J, Henniart, G
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.08.1997
Online AccessGet full text

Cover

Loading…
More Information
Summary:LetFbe a non-Archimedean local field. Letπbe a smooth irreducible complex representation ofGLm(F), andρbe a smooth irreducible complex representation ofGLn(F). Denote bya,b, andcthe exponents in the conductors ofπ,ρ, and the pair (π,ρ), respectively. IfFhas positive characteristic, the following upper bound is a consequence of the Local Langlands correspondence with Galois representations:c⩽na+mb−inf(a,b).We prove this bound directly, regardless of the characteristic ofF, using results of Jacquet, Piatetski–Shapiro, and Shalika on the essential (“new”) vector for smooth irreducible generic representations ofGLn(F).
ISSN:0022-314X
1096-1658
DOI:10.1006/jnth.1997.2142