Excitation energy transfer kinetics of trimeric, monomeric and subunit-depleted Photosystem I from Synechocystis PCC 6803

Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 478; no. 7; p. 1333
Main Authors Akhtar, Parveen, Biswas, Avratanu, Kovács, László, Nelson, Nathan, Lambrev, Petar H
Format Journal Article
LanguageEnglish
Published England 16.04.2021
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Photosystem I is the most efficient photosynthetic enzyme with structure and composition highly conserved among all oxygenic phototrophs. Cyanobacterial Photosystem I is typically associated into trimers for reasons that are still debated. Almost universally, Photosystem I contains a number of long-wavelength-absorbing 'red' chlorophylls (Chls), that have a sizeable effect on the excitation energy transfer and trapping. Here we present spectroscopic comparison of trimeric Photosystem I from Synechocystis PCC 6803 with a monomeric complex from the ΔpsaL mutant and a 'minimal' monomeric complex ΔFIJL, containing only subunits A, B, C, D, E, K and M. The quantum yield of photochemistry at room temperature was the same in all complexes, demonstrating the functional robustness of this photosystem. The monomeric complexes had a reduced far-red absorption and emission equivalent to the loss of 1.5-2 red Chls emitting at 710-715 nm, whereas the longest-wavelength emission at 722 nm was not affected. The picosecond fluorescence kinetics at 77 K showed spectrally and kinetically distinct red Chls in all complexes and equilibration times of up to 50 ps. We found that the red Chls are not irreversible traps at 77 K but can still transfer excitations to the reaction centre, especially in the trimeric complexes. Structure-based Förster energy transfer calculations support the assignment of the lowest-energy state to the Chl pair B37/B38 and the trimer-specific red Chl emission to Chls A32/B7 located at the monomer-monomer interface. These intermediate-energy red Chls facilitate energy migration from the lowest-energy states to the reaction centre.
ISSN:1470-8728
DOI:10.1042/BCJ20210021