Augmentation of XNAV System to an Ultraviolet Sensor-Based Satellite Navigation System

X-ray pulsar-based navigation (XNAV) using one X-ray detector is investigated as an augmentation to the capability of an ultraviolet (UV) sensor-based satellite autonomous navigation system. The satellite state dynamics are analyzed to establish the dynamical equations of the satellite autonomous na...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 3; no. 5; pp. 777 - 785
Main Authors Qiao, Li, Liu, Jianye, Zheng, Guanglou, Xiong, Zhi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:X-ray pulsar-based navigation (XNAV) using one X-ray detector is investigated as an augmentation to the capability of an ultraviolet (UV) sensor-based satellite autonomous navigation system. The satellite state dynamics are analyzed to establish the dynamical equations of the satellite autonomous navigation system. A time transformation equation that accounts for relativistic effects is presented and the measurement model of the XNAV system is derived using pulse phase information from only one pulsar. The measurement model of the UV sensor-based satellite navigation system is presented using the Earth image information from the UV sensor. In order to integrate the measurements from the X-ray sensor and the UV sensor, a federated filter is developed to provide the optimal simultaneous estimation of position and velocity of the satellite. The concept is demonstrated on a GPS orbit and a geosynchronous orbit and it is found that the performance of the integrated satellite navigation system is improved with respect to that of the UV sensor-based satellite navigation system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1932-4553
1941-0484
DOI:10.1109/JSTSP.2009.2028380