Cellular-Base-Station-Assisted Device-to-Device Communications in TV White Space

This paper presents a systematic approach to exploiting TV white space (TVWS) for device-to-device (D2D) communications with the aid of the existing cellular infrastructure. The goal is to build a location-specific TVWS database, which provides a lookup table service for any D2D link to determine it...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 34; no. 1; pp. 107 - 121
Main Authors Guoru Ding, Jinlong Wang, Qihui Wu, Yu-Dong Yao, Fei Song, Tsiftsis, Theodoros A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a systematic approach to exploiting TV white space (TVWS) for device-to-device (D2D) communications with the aid of the existing cellular infrastructure. The goal is to build a location-specific TVWS database, which provides a lookup table service for any D2D link to determine its maximum permitted emission power (MPEP) in an unlicensed digital TV (DTV) band. To achieve this goal, the idea of mobile crowd sensing is first introduced to collect active spectrum measurements from massive personal mobile devices. Considering the incompleteness of crowd measurements, we formulate the problem of unknown measurements recovery as a matrix completion problem and apply a powerful fixed point continuation algorithm to reconstruct the unknown elements from the known elements. By joint exploitation of the big spectrum data in its vicinity, each cellular base station further implements a nonlinear support vector machine algorithm to perform irregular coverage boundary detection of a licensed DTV transmitter. With the knowledge of the detected coverage boundary, an opportunistic spatial reuse algorithm is developed for each D2D link to determine its MPEP. Simulation results show that the proposed approach can successfully enable D2D communications in TVWS while satisfying the interference constraint from the licensed DTV services. In addition, to our best knowledge, this is the first try to explore and exploit TVWS inside the DTV protection region resulted from the shadowing effect. Potential application scenarios include communications between internet of vehicles in the underground parking and D2D communications in hotspots such as subway, game stadiums, and airports.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2015.2452532