A Switched Integral-Based Event-Triggered Control of Uncertain Nonlinear Time-Delay System With Actuator Saturation

This article explores the asymptotic stabilization criteria of the uncertain nonlinear time-delay system subject to actuator saturation. A switched integral-based event-triggered scheme (IETS) is established to reduce the redundant data transmission over the networks. The switched IETS condition use...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 11; pp. 11335 - 11347
Main Authors Li, Hongfei, Zhang, Liruo, Zhang, Xiaoyu, Yu, Junzhi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article explores the asymptotic stabilization criteria of the uncertain nonlinear time-delay system subject to actuator saturation. A switched integral-based event-triggered scheme (IETS) is established to reduce the redundant data transmission over the networks. The switched IETS condition uses the integration of system states over a time period in the past. A fixed waiting time is included to avoid the Zeno behavior. In order to estimate a larger domain of attraction, a delay-dependent polytopic representation method is presented to deal with the effects of actuator saturation in the proposed model. A new series of less conservative linear matrix inequalities (LMIs) is proposed on the basis of delay-dependent Lyapunov-Krasovskii functional (LKF) to ensure the stability of nonlinear time-delay system subject to actuator saturation using the proposed IETS. Numerical examples are used to confirm the effectiveness and advantages of the proposed IETS approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3085735