Wavelet Fuzzy Neural Network With Asymmetric Membership Function Controller for Electric Power Steering System via Improved Differential Evolution

A wavelet fuzzy neural network using asymmetric membership function (WFNN-AMF) with improved differential evolution (IDE) algorithm is proposed in this study to control a six-phase permanent magnet synchronous motor (PMSM) for an electric power steering (EPS) system. First, the dynamics of a steer-b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 30; no. 4; pp. 2350 - 2362
Main Authors Hung, Ying-Chih, Lin, Faa-Jeng, Hwang, Jonq-Chin, Chang, Jin-Kuan, Ruan, Kai-Chun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A wavelet fuzzy neural network using asymmetric membership function (WFNN-AMF) with improved differential evolution (IDE) algorithm is proposed in this study to control a six-phase permanent magnet synchronous motor (PMSM) for an electric power steering (EPS) system. First, the dynamics of a steer-by-wire EPS system and a six-phase PMSM drive system are described in detail. Moreover, the WFNN-AMF controller, which combines the advantages of wavelet decomposition, fuzzy logic system, and asymmetric membership function (AMF), is developed to achieve the required control performance of the EPS system for the improvement of stability of the vehicle and the comfort of the driver. Furthermore, the online learning algorithm of WFNN-AMF is derived using back-propagation method. However, degenerated or diverged responses will be resulted due to the inappropriate selection of small or large learning rates of the WFNN-AMF. Therefore, an IDE algorithm is proposed to online adapt the learning rates of WFNN-AMF. In addition, a 32-bit floating-point digital signal processor, TMS320F28335, is adopted for the implementation of the proposed intelligent controlled EPS system. Finally, the feasibility of the proposed WFNN-AMF controller with IDE for the EPS system is verified through experimental results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2014.2327693