Non-apoptotic programmed cell death induced by a copper(II) complex in human fibrosarcoma cells

A0, a Cu(II) thioxotriazole complex, produces severe cytotoxic effects on HT1080 human fibrosarcoma cells with a potency comparable to that exhibited by cisplatin. A0 induced a characteristic series of changes, hallmarked by the formation of eosin- and Sudan Black-B-negative vacuoles. No evidence of...

Full description

Saved in:
Bibliographic Details
Published inHistochemistry and cell biology Vol. 126; no. 4; pp. 473 - 482
Main Authors Tardito, S, Bussolati, O, Gaccioli, F, Gatti, R, Guizzardi, S, Uggeri, J, Marchiò, L, Lanfranchi, M, Franchi-Gazzola, R
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.10.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A0, a Cu(II) thioxotriazole complex, produces severe cytotoxic effects on HT1080 human fibrosarcoma cells with a potency comparable to that exhibited by cisplatin. A0 induced a characteristic series of changes, hallmarked by the formation of eosin- and Sudan Black-B-negative vacuoles. No evidence of nuclear fragmentation or caspase-3 activation was detected in cells treated with A0 which, rather, inhibited cisplatin-stimulated caspase-3 activity. Membrane functional integrity, assessed with calcein and propidium iodide, was spared until the late stages of the death process induced by the copper complex. Vacuoles were negative to the autophagy marker monodansylcadaverine and their formation was not blocked by 3-methyladenine, an inhibitor of autophagic processes. Negativity to the extracellular marker pyranine excluded vacuole derivation from the extracellular fluid. Ultrastructural analysis indicated that A0 caused the appearance of many electronlight cytoplasmic vesicles, possibly related to the endoplasmic reticulum, which progressively enlarge and coalesce to form large vacuolar structures that eventually fill the cytoplasm. It is concluded that A0 triggers a non-apoptotic, type 3B programmed cell death (Clarke in Anat Embryol (Berl) 181:195-213, 1990), characterized by an extensive cytoplasmic vacuolization. This peculiar cytotoxicity pattern may render the employment of A0 to be of particular interest in apoptosis-resistant cell models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0948-6143
1432-119X
DOI:10.1007/s00418-006-0183-4