Doubly Fed Induction Generator Wind Turbine Systems Subject to Recurring Symmetrical Grid Faults

New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical g...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 31; no. 2; pp. 1143 - 1160
Main Authors Wenjie Chen, Blaabjerg, Frede, Nan Zhu, Min Chen, Dehong Xu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical grid faults is established. The analysis is based on the DFIG wind turbine system with the typical low-voltage ride-through strategy-with rotor-side crowbar. The stator natural flux produced by the voltage recovery after the first grid fault may be superposed on the stator natural flux produced by the second grid fault, so that the transient rotor and stator current and torque fluctuations under the second grid fault may be influenced by the characteristic of the first grid fault, including the voltage dips level and the grid fault angle, as well as the duration between two faults. The mathematical model of the DFIG under recurring grid faults is verified by simulations on a 1.5-MW DFIG wind turbine system model and experiments on a 30-kW reduced scale DFIG test system.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2015.2418791