Adaptive Prescribed Performance Control of A Flexible-Joint Robotic Manipulator With Dynamic Uncertainties

An adaptive fuzzy control strategy is proposed for a single-link flexible-joint robotic manipulator (SFRM) with prescribed performance, in which the unknown nonlinearity is identified by adopting the fuzzy-logic system. By designing a performance function, the transient performance of the control sy...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 12; pp. 12905 - 12915
Main Authors Ma, Hui, Zhou, Qi, Li, Hongyi, Lu, Renquan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An adaptive fuzzy control strategy is proposed for a single-link flexible-joint robotic manipulator (SFRM) with prescribed performance, in which the unknown nonlinearity is identified by adopting the fuzzy-logic system. By designing a performance function, the transient performance of the control system is guaranteed. To stabilize the SFRM, a dynamic signal is applied to handle the unmodeled dynamics. To cut down the communication load of the channel, the event-triggered control law is developed based on the switching threshold strategy. The Lyapunov stability theory and backstepping technique are applied coordinately to design the control strategy. The semiglobally ultimately uniformly boundedness can be ensured for all signals in the closed-loop system. The designed control method can also guarantee that the tracking error can converge to a small neighborhood of zero within the prescribed performance boundaries. At the end of the article, two illustrative examples are shown to validate the designed event-triggered controller.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3091531