Chemical Composition, Antioxidant, and Cytotoxic Effects of Senna rugosa Leaf and Root Extracts on Human Leukemia Cell Lines

is a species found in the Cerrado and used in folk medicine as a vermifuge and in the treatment of poisonous snakebites accidents. In this work, we identified the main secondary metabolites present in ethanolic extracts of the leaves (ELSR) and roots (ERSR) of and evaluated the potential cytoprotect...

Full description

Saved in:
Bibliographic Details
Published inPharmaceuticals (Basel, Switzerland) Vol. 17; no. 8; p. 974
Main Authors Dos Santos, Cintia Miranda, Baldivia, Debora da Silva, de Castro, David Tsuyoshi Hiramatsu, Carvalho, José Tarciso de Giffoni, Oliveira, Alex Santos, da Rocha, Paola Dos Santos, Campos, Jaqueline Ferreira, Balogun, Sikiru Olaitan, de Oliveira, Caio Fernando Ramalho, da Silva, Denise Brentan, Carollo, Carlos Alexandre, de Picoli Souza, Kely, Dos Santos, Edson Lucas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.07.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:is a species found in the Cerrado and used in folk medicine as a vermifuge and in the treatment of poisonous snakebites accidents. In this work, we identified the main secondary metabolites present in ethanolic extracts of the leaves (ELSR) and roots (ERSR) of and evaluated the potential cytoprotective effect against cellular macromolecular damage, as well as the cytotoxic properties of the extracts on the K562 and Jurkat leukemic cell lines. The identification of metabolites was carried out by liquid chromatography coupled with mass spectrometry. The antioxidant activities were investigated by direct ABTS and DPPH radical scavenging methods, protection against oxidative damage in proteins, and DNA. Cytotoxic properties were investigated against healthy cells, isolated from human peripheral blood (PBMC) and leukemic cell lines. The leaf extracts contained catechin, rutin, epigallocatechin derivatives, kaempferol glycosides, luteolin, and dimeric and trimeric procyanidins, while the root extract profile showed obtusichromoneside derivatives, 2-methoxystypandrone, stilbene derivatives, naphthopyranones, and flavanone derivatives. The extracts showed antioxidant activity, with an IC of 4.86 ± 0.51 μg/mL and 8.33 ± 0.90 μg/mL in the ABTS assay for ELSR and ERSR, respectively. Furthermore, in the DPPH assay, the IC was 19.98 ± 1.96 μg/mL for ELSR and 13.37 ± 1.05 μg/mL for ERSR. The extracts protected macromolecules against oxidative damage at concentrations of 5 μg/mL. The cytotoxicity test against leukemic strains was observed after 24 and 48 h of treatment. After 48 h, results against the K562 cell line demonstrate an IC of 242.54 ± 2.38 μg/mL and 223.00 ± 2.34 μg/mL for ELSR and ERSR, respectively. While against the Jurkat cell line, these extracts showed an IC of 171.45 ± 2.25 μg/mL and 189.30 ± 2.27 μg/mL, respectively. The results pertaining to PBMC viability demonstrated that the extracts showed selectivity for the leukemic cell lines. Together, our results reveal that the leaves and roots of have completely distinct and complex chemical compositions and expand their significant pharmacological potential in oxidative stress and leukemia conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8247
1424-8247
DOI:10.3390/ph17080974