Adaptive NN Fixed-Time Fault-Tolerant Control for Uncertain Stochastic System With Deferred Output Constraint via Self-Triggered Mechanism

For a class of nonstrict-feedback stochastic nonlinear systems with the injection and deception attacks, this article explores the problem of adaptive neural network (NN) fixed-time control ground on the self-triggered mechanism in a pioneering way. After developing the self-triggered mechanism and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 53; no. 9; pp. 1 - 12
Main Authors Wu, Jian, He, Furong, Shen, Hao, Ding, Shihong, Wu, Zheng-Guang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For a class of nonstrict-feedback stochastic nonlinear systems with the injection and deception attacks, this article explores the problem of adaptive neural network (NN) fixed-time control ground on the self-triggered mechanism in a pioneering way. After developing the self-triggered mechanism and the delay-error-dependence function, a neural adaptive delay-constrained fault-tolerant controller is proposed by employing the backstepping technique. The self-triggered mechanism does not require an additional observer to determine the time of the data transmission, which reduces the consumption of the system resources more efficiently. In addition, the whole Lyapunov function with the delay-error-dependence term is developed to solve the deferred output constraint problem. Under the proposed controller, it can be proven that all the signals within the closed-loop system are semiglobally uniformly bounded in probability, while the convergence time is independent of the initial state and the deferred output constraint control performance is achieved. The feasibility and the superiority of the proposed control strategy are shown by some simulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3205765