Adaptive Neural-Network-Based Fault-Tolerant Control for a Flexible String With Composite Disturbance Observer and Input Constraints
We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and external disturbances. First, we utilize a radial basis function neural network to compensate for the actuator gain fault. In addition, an observ...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 12; pp. 12843 - 12853 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2021.3090417 |
Cover
Loading…
Abstract | We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and external disturbances. First, we utilize a radial basis function neural network to compensate for the actuator gain fault. In addition, an observer is used to handle composite disturbances, including unknown approximation errors and boundary disturbances. Then, an auxiliary system eliminates the effect of the input constraint. By integrating the composite disturbance observer and auxiliary system, adaptive fault-tolerant boundary control is achieved for an uncertain flexible string. Under rigorous Lyapunov stability analysis, the vibration scope of the flexible string is guaranteed to remain within a small compact set. Numerical simulations verify the high control performance of the proposed control scheme. |
---|---|
AbstractList | We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and external disturbances. First, we utilize a radial basis function neural network to compensate for the actuator gain fault. In addition, an observer is used to handle composite disturbances, including unknown approximation errors and boundary disturbances. Then, an auxiliary system eliminates the effect of the input constraint. By integrating the composite disturbance observer and auxiliary system, adaptive fault-tolerant boundary control is achieved for an uncertain flexible string. Under rigorous Lyapunov stability analysis, the vibration scope of the flexible string is guaranteed to remain within a small compact set. Numerical simulations verify the high control performance of the proposed control scheme. We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and external disturbances. First, we utilize a radial basis function neural network to compensate for the actuator gain fault. In addition, an observer is used to handle composite disturbances, including unknown approximation errors and boundary disturbances. Then, an auxiliary system eliminates the effect of the input constraint. By integrating the composite disturbance observer and auxiliary system, adaptive fault-tolerant boundary control is achieved for an uncertain flexible string. Under rigorous Lyapunov stability analysis, the vibration scope of the flexible string is guaranteed to remain within a small compact set. Numerical simulations verify the high control performance of the proposed control scheme.We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and external disturbances. First, we utilize a radial basis function neural network to compensate for the actuator gain fault. In addition, an observer is used to handle composite disturbances, including unknown approximation errors and boundary disturbances. Then, an auxiliary system eliminates the effect of the input constraint. By integrating the composite disturbance observer and auxiliary system, adaptive fault-tolerant boundary control is achieved for an uncertain flexible string. Under rigorous Lyapunov stability analysis, the vibration scope of the flexible string is guaranteed to remain within a small compact set. Numerical simulations verify the high control performance of the proposed control scheme. |
Author | Mu, Chaoxu Zhao, Zhijia Ren, Yong Zou, Tao Hong, Keum-Shik |
Author_xml | – sequence: 1 givenname: Zhijia orcidid: 0000-0001-5893-0233 surname: Zhao fullname: Zhao, Zhijia email: zhjzhaoscut@163.com organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China – sequence: 2 givenname: Yong orcidid: 0000-0002-6016-5582 surname: Ren fullname: Ren, Yong email: renyong@sdust.edu.cn organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China – sequence: 3 givenname: Chaoxu orcidid: 0000-0003-1055-9513 surname: Mu fullname: Mu, Chaoxu email: cxmu@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 4 givenname: Tao orcidid: 0000-0001-7328-5703 surname: Zou fullname: Zou, Tao email: tzou@gzhu.edu.cn organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China – sequence: 5 givenname: Keum-Shik orcidid: 0000-0002-8528-4457 surname: Hong fullname: Hong, Keum-Shik email: kshong@pusan.ac.kr organization: School of Mechanical Engineering, Pusan National University, Busan, South Korea |
BookMark | eNp9kc1u1DAUhS3Uiv7QB0BsLLFhk6l_EjtZtkMHKlXtgkGIVXQT34CLx05tpy17HpwMU3XRBd7Ysr7v6OqeI7Lng0dC3nK24Jw1p-vl9_OFYIIvJGtYyfUrcii4qgshdLX3_Fb6gJykdMvmU89fTf2aHMhSSDFLh-TPmYEx23uk1zhFcMU15ocQfxXnkNDQFUwuF-vgMILPdBl8jsHRIUQKdOXw0XYO6Zccrf9Bv9n8c0Y2Y0g2I_1oU55iB75HetMljPc4W97QSz9O_7JSjmB9Tm_I_gAu4cnTfUy-ri7Wy8_F1c2ny-XZVdFLoXKhTT0AV6BVpYWpDEepVal5yWvVD6ZiYEzHQLBGigobQAVQDaZUBrRR0Mlj8mGXO8ZwN2HK7camHp0Dj2FKrajKRjW8EnJG379Ab8MU_TxdK7TUlVK1ZDOld1QfQ0oRh7a3GbLdrgmsazlrt121267abVftU1ezyV-YY7QbiL__67zbORYRn_mm1JoLLv8C5K6gvg |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_3390_act11040105 crossref_primary_10_1007_s00521_024_10927_3 crossref_primary_10_1007_s11071_024_10806_5 crossref_primary_10_1007_s12555_021_1011_2 crossref_primary_10_3390_act11100299 crossref_primary_10_1109_TII_2022_3215985 crossref_primary_10_1109_TFUZZ_2024_3486750 crossref_primary_10_1007_s00521_024_10522_6 crossref_primary_10_1109_TIM_2024_3391335 crossref_primary_10_1109_TCYB_2024_3414650 crossref_primary_10_1109_TSMC_2022_3165586 crossref_primary_10_1109_TASE_2023_3326347 crossref_primary_10_1016_j_jfranklin_2024_106792 crossref_primary_10_1007_s00521_022_07865_3 crossref_primary_10_1177_00202940241240408 crossref_primary_10_1017_aer_2023_116 crossref_primary_10_1016_j_ast_2024_109426 crossref_primary_10_1007_s11071_024_09749_8 crossref_primary_10_1109_TSMC_2023_3285653 crossref_primary_10_32604_cmc_2024_052008 crossref_primary_10_1109_TCNS_2024_3431414 crossref_primary_10_1109_TCYB_2021_3113168 crossref_primary_10_1007_s12555_022_0387_y crossref_primary_10_1080_02533839_2023_2194923 crossref_primary_10_1109_TSMC_2025_3538872 crossref_primary_10_1002_rnc_5693 crossref_primary_10_1002_rnc_7355 crossref_primary_10_1109_TSMC_2022_3211992 crossref_primary_10_1109_TITS_2024_3522567 crossref_primary_10_1016_j_automatica_2022_110792 crossref_primary_10_1016_j_automatica_2024_111844 crossref_primary_10_1007_s40815_023_01625_8 crossref_primary_10_1016_j_ast_2024_109772 crossref_primary_10_1007_s12555_024_0272_y crossref_primary_10_3390_electronics11101522 crossref_primary_10_1109_TNNLS_2022_3163572 crossref_primary_10_1109_TSMC_2021_3094668 crossref_primary_10_3390_pr12112570 crossref_primary_10_1109_TTE_2024_3445322 crossref_primary_10_1002_acs_3783 crossref_primary_10_1016_j_seta_2024_103831 crossref_primary_10_1155_2022_1238020 crossref_primary_10_1177_00202940221091244 crossref_primary_10_1049_cth2_12319 crossref_primary_10_1109_ACCESS_2021_3115909 crossref_primary_10_1007_s11071_024_10566_2 crossref_primary_10_1109_TSMC_2024_3368026 crossref_primary_10_3390_math11183946 crossref_primary_10_1109_TAES_2024_3403076 crossref_primary_10_1007_s10846_024_02218_9 crossref_primary_10_1002_rnc_6333 crossref_primary_10_1002_rnc_7423 crossref_primary_10_1016_j_neucom_2024_129297 crossref_primary_10_1109_TSMC_2023_3257220 crossref_primary_10_1109_ACCESS_2022_3154418 crossref_primary_10_1007_s00521_022_07463_3 crossref_primary_10_1016_j_neucom_2022_11_010 crossref_primary_10_1016_j_isatra_2023_11_009 crossref_primary_10_1109_TFUZZ_2024_3369422 crossref_primary_10_1002_rnc_7206 crossref_primary_10_1109_ACCESS_2023_3298563 crossref_primary_10_1109_JAS_2023_123093 crossref_primary_10_1109_TFUZZ_2022_3164512 crossref_primary_10_3390_act11100273 crossref_primary_10_1016_j_jfranklin_2024_107256 crossref_primary_10_1109_TFUZZ_2023_3319392 crossref_primary_10_1007_s11071_022_07666_2 crossref_primary_10_1016_j_neunet_2023_09_027 |
Cites_doi | 10.1109/TSMC.2017.2710638 10.1109/TSMC.2015.2426140 10.1109/TCYB.2018.2808321 10.1109/TII.2013.2279232 10.1016/j.ins.2020.12.021 10.1016/j.automatica.2021.109690 10.1109/TFUZZ.2017.2788891 10.1007/s11432-015-5337-3 10.1177/0142331219874157 10.1007/s11432-018-9574-3 10.1016/j.automatica.2020.109102 10.1109/JAS.2020.1003378 10.1007/s11432-019-2714-7 10.1109/TIE.2020.2984442 10.1109/TCYB.2018.2865499 10.1109/TIE.2013.2271597 10.1007/s11432-018-9683-y 10.1109/TFUZZ.2018.2882173 10.1007/s00202-003-0157-7 10.1109/TMECH.2020.2975567 10.1109/TCYB.2018.2799929 10.1007/s11432-017-9389-9 10.1016/j.ast.2019.04.034 10.1109/TSMC.2019.2912900 10.1177/0142331219874228 10.1109/TEVC.2021.3061466 10.1109/TSMC.2018.2882734 10.1016/j.automatica.2011.01.025 10.1109/TIE.2013.2288200 10.1109/TMECH.2020.2987963 10.1080/00207179.2018.1487080 10.1109/TCSII.2019.2901283 10.1016/j.automatica.2018.09.021 10.1109/TAC.2011.2122730 10.1109/TCYB.2015.2456028 10.3182/20110828-6-IT-1002.02482 10.1007/s11432-018-9636-3 10.1016/j.automatica.2016.11.002 10.1007/s00521-014-1644-7 10.1109/TIE.2019.2931230 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3090417 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 12853 |
ExternalDocumentID | 10_1109_TCYB_2021_3090417 9477121 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Planning Project of Guangzhou City grantid: 202102010398; 202102010411 funderid: 10.13039/501100010256 – fundername: National Research Foundation (NRF) of Korea under the auspices of the Ministry of Science and ICT, South Korea grantid: NRF-2020R1A2B5B03096000 funderid: 10.13039/501100003725 – fundername: National Natural Science Foundation of China grantid: 62003193; 61803109; 61803111; 61773366 funderid: 10.13039/501100001809 – fundername: Scientific Research Projects of Guangzhou Education Bureau grantid: 202032793 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2020B0101050001 funderid: 10.13039/501100012245 – fundername: Shandong Natural Science Foundation of China grantid: ZR2020QF049 funderid: 10.13039/501100007129 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c326t-7d8fa16a76572d5d1e3764714186cfd50addb0a209325e9ae6aa5fd46da7d6ab3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 22:24:22 EDT 2025 Sun Jun 29 16:55:45 EDT 2025 Tue Jul 01 00:53:59 EDT 2025 Thu Apr 24 22:57:33 EDT 2025 Wed Aug 27 02:14:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-7d8fa16a76572d5d1e3764714186cfd50addb0a209325e9ae6aa5fd46da7d6ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5893-0233 0000-0002-6016-5582 0000-0003-1055-9513 0000-0001-7328-5703 0000-0002-8528-4457 |
PMID | 34232904 |
PQID | 2737566830 |
PQPubID | 85422 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9477121 proquest_miscellaneous_2549691523 crossref_citationtrail_10_1109_TCYB_2021_3090417 crossref_primary_10_1109_TCYB_2021_3090417 proquest_journals_2737566830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ren (ref11) 2020 sun (ref42) 2020 ref17 ref16 ref19 ref18 ref50 ref45 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 zhao (ref7) 2019 ref37 ref36 zhang (ref48) 2021 ref31 ref33 ref2 ref1 ref39 ref38 he (ref32) 2020 ref24 ref23 ref26 ref25 ren (ref10) 2021 ref20 ref22 ref28 liu (ref27) 2021 huang (ref29) 2020 haidegger (ref46) 2011; 44 zhao (ref21) 2020; 119 turnip (ref51) 2020; 18 he (ref30) 2019 zhang (ref47) 2021 |
References_xml | – ident: ref26 doi: 10.1109/TSMC.2017.2710638 – ident: ref19 doi: 10.1109/TSMC.2015.2426140 – ident: ref31 doi: 10.1109/TCYB.2018.2808321 – ident: ref36 doi: 10.1109/TII.2013.2279232 – ident: ref49 doi: 10.1016/j.ins.2020.12.021 – year: 2019 ident: ref7 article-title: Boundary output constrained control for a flexible beam system with prescribed performance publication-title: IEEE Trans Syst Man Cybern Syst – year: 2020 ident: ref11 article-title: Adaptive neural network boundary control for a flexible manipulator with input constraints and model uncertainties publication-title: IEEE Trans Cybern – ident: ref34 doi: 10.1016/j.automatica.2021.109690 – ident: ref39 doi: 10.1109/TFUZZ.2017.2788891 – year: 2021 ident: ref10 article-title: Adaptive fault-tolerant boundary control for a flexible string with unknown dead-zone and actuator fault publication-title: IEEE Trans Cybern – ident: ref18 doi: 10.1007/s11432-015-5337-3 – ident: ref14 doi: 10.1177/0142331219874157 – ident: ref22 doi: 10.1007/s11432-018-9574-3 – volume: 119 year: 2020 ident: ref21 article-title: Control of nonlinear systems under dynamic constraints: A unified barrier function-based approach publication-title: Automatica doi: 10.1016/j.automatica.2020.109102 – ident: ref33 doi: 10.1109/JAS.2020.1003378 – ident: ref45 doi: 10.1007/s11432-019-2714-7 – year: 2020 ident: ref29 article-title: Disturbance observer-based fault-tolerant control for robotic systems with guaranteed prescribed performance publication-title: IEEE Trans Cybern – ident: ref3 doi: 10.1109/TIE.2020.2984442 – ident: ref43 doi: 10.1109/TCYB.2018.2865499 – ident: ref35 doi: 10.1109/TIE.2013.2271597 – volume: 18 start-page: 193 year: 2020 ident: ref51 article-title: Hybrid controller design based magneto-rheological damper lookup table for quarter car suspension publication-title: Artific Intellig Int J – ident: ref20 doi: 10.1007/s11432-018-9683-y – ident: ref44 doi: 10.1109/TFUZZ.2018.2882173 – ident: ref38 doi: 10.1007/s00202-003-0157-7 – ident: ref5 doi: 10.1109/TMECH.2020.2975567 – ident: ref40 doi: 10.1109/TCYB.2018.2799929 – ident: ref37 doi: 10.1007/s11432-017-9389-9 – ident: ref13 doi: 10.1016/j.ast.2019.04.034 – year: 2021 ident: ref48 article-title: BMT-Net: Broad multitask transformer network for sentiment analysis publication-title: IEEE Trans Cybern – ident: ref17 doi: 10.1109/TSMC.2019.2912900 – ident: ref15 doi: 10.1177/0142331219874228 – year: 2020 ident: ref32 article-title: Reinforcement learning control of a flexible manipulator: An experimental investigation publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref50 doi: 10.1109/TEVC.2021.3061466 – ident: ref4 doi: 10.1109/TSMC.2018.2882734 – ident: ref23 doi: 10.1016/j.automatica.2011.01.025 – ident: ref25 doi: 10.1109/TIE.2013.2288200 – ident: ref8 doi: 10.1109/TMECH.2020.2987963 – year: 2019 ident: ref30 article-title: Adaptive inverse control of a vibrating coupled vessel-riser system with input backlash publication-title: IEEE Trans Syst Man Cybern Syst – year: 2021 ident: ref27 article-title: Adaptive fault-tolerant control of a probe-and-drogue refueling hose under varying length and constrained output publication-title: IEEE Trans Control Syst Technol – ident: ref24 doi: 10.1080/00207179.2018.1487080 – year: 2021 ident: ref47 article-title: Research review for broad learning system: Algorithms, theory, and applications publication-title: IEEE Trans Cybern – ident: ref2 doi: 10.1109/TCSII.2019.2901283 – ident: ref12 doi: 10.1016/j.automatica.2018.09.021 – ident: ref16 doi: 10.1109/TAC.2011.2122730 – ident: ref28 doi: 10.1109/TCYB.2015.2456028 – volume: 44 start-page: 3759 year: 2011 ident: ref46 article-title: Cascade control for telerobotic systems serving space medicine publication-title: IFAC Proc Vol doi: 10.3182/20110828-6-IT-1002.02482 – year: 2020 ident: ref42 article-title: Adaptive dynamic surface fuzzy control for state constrained time-delay nonlinear nonstrict feedback systems with unknown control directions publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref9 doi: 10.1007/s11432-018-9636-3 – ident: ref1 doi: 10.1016/j.automatica.2016.11.002 – ident: ref41 doi: 10.1007/s00521-014-1644-7 – ident: ref6 doi: 10.1109/TIE.2019.2931230 |
SSID | ssj0000816898 |
Score | 2.5817575 |
Snippet | We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12843 |
SubjectTerms | Actuator gain fault Actuators Adaptive control adaptive fault-tolerant boundary control Adaptive systems Artificial neural networks auxiliary system Boundary control Disturbance observers Fault tolerance Fault tolerant systems flexible string (FS) Mathematical model Neural networks neural-network composite disturbance observer (NNCDO) Radial basis function Stability analysis Strings Vibration analysis Vibrations |
Title | Adaptive Neural-Network-Based Fault-Tolerant Control for a Flexible String With Composite Disturbance Observer and Input Constraints |
URI | https://ieeexplore.ieee.org/document/9477121 https://www.proquest.com/docview/2737566830 https://www.proquest.com/docview/2549691523 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1yAUhALBRmJAyC8dew4j2O7sCpILQe2opyicewIRJRddZNLz_3hzDjeHAAhbpZiW47m9Y09D8ZekfApozOB1LUi1bUToLUXzinI61obV1K-8_lFdnaZfroyV3vs3ZQL470PwWd-TsPwlu_W9UBXZcdlmucJZY3fQcdtzNWa7lNCA4nQ-lbhQCCqyOMjZiLL49Xi2yk6gyqZa1nKNKHee1T7TpWxQ9vOIoUWK3_o5WBslvfZ-e6YY4zJz_nQ23l981sFx__9jwfsXkSd_GRkkwO257uH7CDK9Za_jsWn3xyy2xMHG1KBnMp2QCsuxjhxcYrmzvElDG0vVusWp3c9X4yB7hyRLwe-pOKatvX8S0-3hfzrj_47J4VDgWGev0eOGq4tsRn_bOk22OOqzvGP3WYIe21Dw4p--4hdLj-sFmcidmoQNcK_XuSuaCDJIM9MrpxxiUe9hWYvTYqsbpyRqEWtBCURLRpfgs8ATOPSzEHuMrD6Mdvv1p1_wjiaVOt1U4Ax6LW7ujSq8YVUYF1jGoAZkztqVXUsY06Ha6vgzsiyIlpXROsq0nrG3k5LNmMNj39NPiSCTRMjrWbsaMcSVZTybYXQL0c4XGg5Yy-nzyif9OgCnV8POAcd8KxElKSf_n3nZ-yuopSKECJzxPb768E_R6DT2xeBw38BZMT5Rg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq9gAX2lIQWwo1EgdAeOvYcR7HdstqC93lwFaUU2THjkBE2VU3uXDmhzPjeHMAhLhZythyNOOZz-N5EPISD59QMmHAXcNiWVqmpXTMWqHTspTK5pjvPF8ks5v4_a263SFvh1wY55wPPnNjHPq3fLsqO3SVneVxmkaYNb6nMBm3z9YaPCq-hYRvfitgwABXpOEZM-L52XLy5QKugyIaS57zOMLue1j9TuShR9vWJvkmK39oZm9upvtkvt1oH2Xyfdy1Zlz--K2G4__-yQF5EHAnPe8F5ZDsuOYhOQwne0NfhfLTr4_Iz3Or16gEKRbu0DVb9JHi7AIMnqVT3dUtW65qIG9aOulD3SlgX6rpFMtrmtrRTy36C-nnb-1XiioHQ8McvQSZ6u4MChr9aNAf7GBWY-lVs-78WhvfsqLdPCI303fLyYyFXg2sBADYstRmlY4SnSYqFVbZyIHmAsMXR1lSVlZx0KOGa8EBLyqXa5dorSobJ1anNtFGPia7zapxTwgFo2qcrDKtFNzbbZkrUbmMC21spSqtR4RvuVWUoZA5bq4u_IWG5wXyukBeF4HXI_JmmLLuq3j8i_gIGTYQBl6NyMlWJIpwzjcFgL8UAHEm-Yi8GD7DCcVnF924VQc0cAVPcsBJ8vjvK5-Se7Pl_Lq4vlp8eEruC0yw8AEzJ2S3vevcM4A9rXnupf0XhTz8jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural-Network-Based+Fault-Tolerant+Control+for+a+Flexible+String+With+Composite+Disturbance+Observer+and+Input+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Zhijia&rft.au=Ren%2C+Yong&rft.au=Mu%2C+Chaoxu&rft.au=Zou%2C+Tao&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=52&rft.issue=12&rft.spage=12843&rft.epage=12853&rft_id=info:doi/10.1109%2FTCYB.2021.3090417&rft_id=info%3Apmid%2F34232904&rft.externalDocID=9477121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |